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1. Progress of Theoretical Work

In the AFOSR grant, the complex interaction between noise, stability

and nonlinear dynamics inherent in mechanical systems was examined

and a consistent method for analyzing stochastic nonlinear systems was

developed. This has led to a new qualitative understanding of the physical

phenomena encountered in nonlinear mechanical and structural systems

under harmonic and stochastic excitations. The mathematical techniques

developed under the current AFOSR grant will allow engineers and

scientists to predict possible motion instabilities in such systems as rotor

blade dynamics in forward flight in a region of high atmospheric

turbulence as well as rotating shafts subjected to harmonic, stochastic and

combined harmonic and stochastic excitations.

1.1 Nonlinear Deterministic Systems

Recently, considerable effort has been directed toward obtaining a

better understanding of nonlinear behavior and instability mechanisms of

rotating shafts, a fundamental component of many mechanical systems.

Toward this end, an analytical method based on both Hamiltonian and non-

Hamiltonian frameworks is being developed by the PI and one of his

graduate students. The case in which a harmonic axial excitation is

applied has been studied in detail by the PI and his graduate student [1]. It

was shown that in addition to the simple and Hopf bifurcations in the

presence of subharmonic and combination resonances, respectively, such

systems can exhibit a generalized Hopf bifurcation with 1:1 resonance

when the damping is very small. In connection to this, the effects of

periodic parametric excitations on systems exhibiting Hopf bifurcations

with 1:1 resonance are also being investigated [2, 31. Both semisimple and

non-semisimple cases are of interest, and the normal forms are calculated

when the forcing frequency is near twice the natural frequency.

Furthermore, since symmetric properties are fundamental features of

many engineering systems, the PI is currently studying global bifurcations

with rotational and reflective symmetries, as well as the effects of

imperfections that destroy this symmetry.
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The techniques developed under the current AFOSR grant can be

applied to a wide variety of realistic problems in nonlinear structural

dynamics. As mentioned above, the results have already been applied to

study the stability and bifurcation behavior of gyroscopic systems (i.e. the

rotating shaft) under combined harmonic and stochastic excitations and

the dynamics of rotor blades in forward flight. Further applications

include the analysis of propellant lines conveying pulsating (possibly

turbulent) fluid flow. The PI has introduced novel mathematical and

computational methods to study the nonlinear behavior of both gyroscopic

and nonconservative deterministic systems [4, 51. Over the next few years,

the PI will develop both local and global techniques to investigate various co-

dimension two and three bifurcations under time periodic perturbations.

Special emphasis will be given to the study of global chaotic phenomena in

these systems.

1.2. Nonlinear Stochastic Systems

In many situations, parametric or external excitations cannot

always be adequately modelled by deterministic time functions alone. They

fluctuate randomly over a wide band of frequencies and have to be

considered as stochastic functions of time defined only in probabilistic

terms. Since the effects of stochastic perturbations are of greatest

importance near bifurcation points in any dynamical system, a portion of

this research focuses on noise induced transitions near such points. The

results obtained have great impact on such engineering problems as

aircraft at high angles of attack [61, panels under gas flow with both

turbulent boundary layers and random axial loads [7,8], rotating systems

under pulsating axial loads [9] and propellant lines conveying turbulent

fluid flow [10].
The PI has developed a method called "stochastic normal forms"

which replaces the original nonlinear system by an "equivalent" (in the

stochastic sense) system of lower dimension [11,12]. A consistent method

for analyzing stochastic nonlinear systems has been developed through this

investigation. These new techniques [13, 14, 15, 16], based on the concept of

Lyapunov exponents and multiplicative ergodic theory, provide insight into

the effects of harmonic and stochastic excitations on the response of
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nonlinear dynamical systems. Stability boundaries and bifurcation

scenarios are then determined for such systems as helicopter rotor blades

in forward flight [17, 18] and rotating shafts subjected to combined

harmonic and stochastic excitations [9]. Results obtained in this study

explain how small amplitude periodic or stochastic fluctuations in the

parameters of a system or its environment can have a marked effect on the

dynamics of physically realistic nonlinear systems. The current research

has led to fundamental contributions in understanding co-dimension two

stochastic bifurcations such as the interaction of Hopf and pitchfork

bifurcations under stochastic excitations [19, 20].

In the prior AFOSR support, the results were obtained for white or

nearly white noise cases. These assumptions, however, are idealistic. The

PI is currently examining the the cases of realistic colored noise and

simultaneous harmonic and stochastic excitations which are often

encountered in nonlinear mechanical and structural systems.

2. Progress of Experimental Work

The objective of the experimental research is the development of

laboratory facilities to conduct a series of tests designed to verify the

analytical results obtained by the PI under his current AFOSR grant and

otL-er previous support.

2.1 Mechanical Problem

One of the most fundamental components of a mechanical system is

a rotating shaft. It is, therefore, not surprising that through the years

considerable effort has been directed toward obtaining a better

understanding of such mechanisms. The dynamics and response of

rotating and gyroscopic systems have been studied extensively in the

literature. The equations describing the transverse motion of a continuous

uniform elastic shaft of asymmetrical cross-section mounted in a rigid

bearing and rotating with angular velocity Q(t) about the horizontal center

line of the bearings are
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where P(t) may be harmonic, stochastic or a combination of both. The shaft
is of length L, mass per unit length m, and flexural rigidities EI, and EI,

parallel to directions Ou and Ov, respectively. The terms fi(u,v), i=1,2,

consist of all nonlinearities due to nonlinear strain-displacement relations

and the nonlinear damping model. In addition, fi(u,v) may also contain the

effects of mass imbalance and bearing forces, including impacts.

2.2 Proposed Experimental Investigation of the Rotating Shaft

One of the main objectives of the proposed research is to conduct a

series of experiments on a rotating shaft. An important application of this

work is the study of aircraft gas turbine engines. Both rotor imbalance and

impact due to bearing clearance are inherent in such systems. Thus, the

experimental set-up will consist of an elastic shaft supported by bearings

with clearance to depict realistic operating conditions in a turbine engine.

This clearance is modelled by a bilinear spring. It is intended to measure

the time response of a rotating shaft under two separate operating

conditions. Specifically, the transverse vibrations will be monitored as the

shaft is subjected to (1) time varying axial thrust at various constant

rotation rates and (2) various static axial loads with time-dependent

angular velocity.

The experimental problem can be divided into three categories:

design and construction of the shaft and test rig, integration of the shaker

(external excitation) and motor (rotation), and implementation of sensors

and time series analysis. Detailed descriptions of each of these components

are given in the following four subsections.

2.2.1 Design of Shaft and Test Rig

The shaft to be studied will be constructed from hard naval brass.

The published material properties of hardened yellow brass are shown in
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Table 1 along with the shaft characteristics of interest. The shaft has a
clamped length of L = 25.1 in. and a diameter of d = 0.25 in.

As shown in Table 1, the critical static buckling load of the shaft is
Pcr= 190 lbf and the natural angular frequency is fn = 50 Hz. Assuming a
safety factor of 1.5 (amax = Oyield/1"5), the maximum allowable strain will be

Emax - 2500 pin/in which corresponds to a centerline deflection of c = 0.3 in.

Table I: Physical Characteristics of Shaft

Shaft Property Characteristic Value

Material hard naval brass

E 15.9 x 106 psi
9t 7.92 x 10-4 lbf-s2/in 4

Sy 60 ksi

L 25.1 in

d 0.25 in
fn 50 Hz

Pcr 191 lbf

amax 0.3 in

MRnX 2500 gin/in
(Ax)max 0.018 in

The bearing assemblies are designed to closely approximate

clamped-clamped boundary conditions. With the ,ise of -uper-precision
bearings, the maximum angular deflection of the shaft at the bearings is
calculated to be 0.013 degrees. Thus, for the first 0.013 degrees of deflection

at the bearings, the model behaves as if it is a pinned-pinned shaft.
Assuming pinned-pinned boundary conditions, the maximum center line

4eflection corresponding to this angular deflection at the ends can be

calculated to be 0.002 inches. This deflection corresponds to a strain gage
reading of approximately 1.9 gin/in which is negligible. Thus, we can

assume clamped-clamped boundary conditions throughout.
The brass shaft is held in the motor end bearing hub using a slit

clamp and bolts and four set screws. The large steel bearing blocks and
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large thrust bearing take the full load transmitted by the shaft. The bearing

hub has eight port holes tapped through it to allow for passage of the strain

gage leads from the shaft to the slip ring, which is mounted on the bearing

hub. The bearing hub is then passed through a radial bearing and coupled

to the flywheel and drive motor. Also mounted on the bearing hub is a

timing belt pulley used to drive the auxiliary shaft. The auxiliary shaft and

timing belts are used to synchronize the rotation rate of the shaker end

bearing hub with that of the shaft to minimize torque in the experimental

model. Therefore, the shaft will experience only axial movement with

respect to the linear/rotary bearings, insuring that they do not bind.

The shaker-end bearing hub is mounted in two bearings, one of

which is a thrust bearing used to provide increased axial rigidity. Three

0.375 inch linear/rotary bearings are mounted inside the bearing hub to

allow axial movement of the shaft. The hardened stainless steel sleeve on

which the linear/rotary bearings act is attached to the shaft using a shrink

fit. The sleeve acts as the inner race for the ball bearings and also

increases the stiffness of the shaft through thc bearing.

A small thrust bearing is used to transmit the axial loading to the

rotating shaft. A load cell is mounted on the thrust bearing to measure the

static and dynamic axial loads which are to be applied. Mounted directly

above the load cell is a cross bar which transmits the static and dynamic

axial loading to the shaft. The static load is applied using two small

pneumatic air cylinders which are pressurized with a one gallon air tank.

An air tank pressure of 100 psia will apply a static load of 260 !bf. The

dynamic axial load is applied to the shaft using a 100 lbf shaker, which acts

through the center of the cross Lar.

2.2.2 Integration of Motor and Shaker

The motor currently under consideration for these experiments is the

MTS 1000-Watt pulse-width modulated servo motor and controller. This

motor/controller system provides high performance, high accuracy

operation necessary for the proposed experimental project. In the case of a

constant rotation rate, i.e. Q(t)=f0 , such a high torque motor is not

necessary. However, in the second phase of the proposed experimental

program, the parametric excitation is given in the form of a time dependent
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rotation ra, , i.e. Q•(t) = 00 + C11(t). The high torque required to insure

precise control of the time-varying component of this excitation necessitates

a high performance motor.

The dynamic axial loading applied to the shaft is generated by a

Bruel & Kjaer 445 N (100 lbf) shaker mounted as shown in Figures 3 and 5.

The shaker is used to apply only the dynamic load since use of this system

to apply static loads may cause the shaker to overheat. The Bruel & Kjaer

shaker system was chosen since it provides the most precise frequency

command following which is essential in these experiments. The

command signal is generated by a Tektronix 2630 FFT Analyzer/Signal

Generator. This signal generator is capable of producing dc, periodic,

random or any combination of these waveforms.

The amplitude of the static load and the amplitude and frequency of

the dynamic load will be measured by a 200 lbf S-type load cell mounted on

the thrust bearing at the shaker end of the shaft. The signal from the load

cell is passed through a Wagner model #460 Signal Conditioner/Amplifier.

Currently, the shaker system is run open-loop; the signal from the

amplifier is input to the Tektronix 2630 analyzer where it can be compared

to the reference input. In this configuration, no corrective action is taken if

the excitation amplitude does not correspond exactly to the desired

waveform (for periodic inputs) or to the desired spectrum (for random

inputs).

2.2.3 Data Acquisition and Time Series Analysis

A schematic diagram of the experimental set-up is given in Figure 9.

The deflection of the shaft in the principle directions, i.e. the rotating u- and

v-coordinates, will be measured by strain gages. A total of four foil gages

are mounted on the shaft, one every 900, and arranged in two half-bridge

configurations. The strain gage signals are passed through the Fabricast

model #1401001 slip ring to a Measurements Group #2311 Signal

Conditioning Amplifier. The conditioned signals are then input to the

Tektronix analyzer. The analyzer, run from a Gateway 486 PC,

implements the following standard signal analysis functions:
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# time domain waveform and orbit (x - y) plots;

* averaged po',er spectral density and cross spectral density functions;

* transfer (frequency response) function and FFT;

* coherence function;

* waveform averaging;

# auto- and cross-correlation;

# impulse response function;

These standard functions are indeed the most frequently applied

techniques for understanding experimental data. Such analysis is useful

for obtaining the frequency components and power distribution as a

function of frequency. However, in order to gain a detailed description of

the nonlinear dynamics, it is imperative to utilize nonstandard time series

analysis. Lyapunov exponents, wavelet transforms and fractal dimensions

are examples of such nonstandard techniques.

3. Current Research

3.1 Specific Objectives

The specific objective of the current work is to examine, both

theoretically and experimentally, the nonlinear response of gyroscopic

systems under stochastic and harmonic excitation. This study will include

the following:

# examination of the combined effects of mass imbalance, asymmetry

and realistic boundary conditions on the nonlinear response of

rotating systems;

* development of a nonlinear control technique designed to suppress

unwanted vibrations and chaotic motions in gyroscopic systems;

* experimental verification of the theories developed.

The current research will investigate the effects of both parametric

and internal resonances on the local and global dynamics of realistic

gyroscopic systems. In most realistic cases, the mechanical system is

subject to stochastic as well as deterministic excitations. The stability

boundaries for such cases must also be obtained. Toward this end, the PI
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and his graduate students are extending the techniques developed in the

study of stochastic dynamical systems by removing some of the restrictive

conditions. The goal of this effoct is the development of a systematic

approach to nonlinear stochastic problems. The results obtained will

identify the mechanisms which give rise to instability and unwanted

vibrations under complex loading conditions. In addition to understanding

the mechanisms of instability, it is beneficial to be able to suppress

unwanted component oscillations. A general approximate nonlinear

control methodology designed to suppress undesired motions in

mechanical system such as the rotating shaft is also under development as

part of the current research. In the above-mentioned studies, benchmark

experiments are necessary to validate the current theories for the limited

classes of systems to which they apply and to guide the development of more

general theories in the areas of nonlinear dynamics and cantrol.

3.2 Scope of the Current Theoretical Work

The research in the previous AFOSR grant has produced important

analytical results for lower dimensional systems. However, little analysis

and few results ae- available for large realistic multidegree-of-freedom

(n>4) mechanical systems due to their complexity. Furthermore, it is

imperative that experimental results be provided for comparison to the

theoretical models. This project addresses both the analytical and

experimental aspects of the PI's current and planned research.

In the course of the current study, several questions, which have

hitherto not been studied globally, will be addressed:

* What are the effects of mass imbalance, asymmetry and motion

constraints on the nonlinear response of gyroscopic systems?
* What are the mechanisms of global bifurcations in such systems?

# Why is noise beneficial in some nonlinear systems but harmful in

others?
* What additional effects are caused by the presence of harmonic

excitation?
* What is the effect of noise on the stable and unstable periodic

motions?
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Answers to these qtvestions will deepen our understanding of the dynamics
of mechanical systems in real life situations and will aid in the design of

more efficient dynamical systems.

The PI's current research is also concerned with the development of

a general control algorithm for nonlinear rmltidegree-of-freedom
mechanical systems. A variety of power generating components become

unstable due to parametric excitations which may lead to catastrophic
failures. Thus, it is important to study the instability mechanisms in detaii

and to control undesirable component motions. This work will result in a
systematic method of suppressing unwanted vibrations and chaotic
motions in rotating shafts subjected to motion constraints. The nonlinear

control designs will then be implemented in the laboratory.

3.3 Scope of the Current Experimental Work

At this stage of our investigation, it is imperative to verify the
theoretical results of the ongoing AFOSR grant through a series of

experiments. To this end, the PI will conduct experiments with models
whose essential dynamics correspond to the class of systems for which the

theory was developed. These experiments are intended to validate the new

theories and/or to identify the essence of physical phenomena that must be

modelled.

Unlike the area of deterministic dynamics, there are very few
experimental studies on nonlinear stochastic dynamics available for

comparison. Therefore, the current experimental work will be valuable in

providing insight into the stochastic dynamics of actual mechanical

systems and in bridging the gap between the existing theoretical analysis
and physical observation.

The numerical and analytical results will be compared with the

follo ing estimated results obtained from the experiments:

* mean squares and power spectra of responses;

# auto- ant cross-correlation of the response coordinates;
# probability density functions of the responses;

# Lyapunov exponents and fractal dimensions.
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The experiments will, in turn, guide the developments and

refinements of the theories developed to incorporate any new phenomena

observed. In addition, there is a primary need to increase the experimental

skills of dynamics and control graduate students and the current program

will establish a modern dynamics and control laboratory at the graduate

level.

4. References (AFOSR Prior Support)

1. M. M. Doyle, Nonlinear dynamics of a rotating shaft subjected to a
periodic axial load, Masters Thesis, Department of Aeronauticai and
Astronautical Engineering, University of Illinois, 1991.

2. N. Sri Namachchivaya and N. Malhotra, Parametrically Excited Hopf
Bifurcation with Non-semisimple 1:1 Resonance, Nonlinear Vibrations,
ASME-AMD, Vol. 114, 1992.

3. N. Sri Namachchivaya, M. Doyle, W. F. Langford, and N. W. Evans,
Normal Form For Generalized Hopf Bifurcation With Non-semisimple
1:1 Resonance, to appear in Journal of Applied Mathematics and
Physics, ZAMP

4. N. Sri Namachchivaya and W.M. Tien, Bifurcation Behavior of
Nonlinear Pipes Conveying Pulsating Flow, Journal of Fluids and
Structures, Vol. 3(4), 1989, 81-102.

5. M. Doyle and N. Sri Nainachchivaya, Nonlinear Dynamics of a Rotating
Shaft Subjected to a Periodic Axial Load, [in preparation].

6. N. Sri Namachchivaya and H. J. Van Roessel, Unfolding of Bifurcations
Associated with Double Zero Eigenvalue for Supersonic Flow Past a
Pitching Wedge, Journal of Guidance, Control and Dynamics, Vol.
13(2), 1990, pp.3 4 3 -3 4 7 .

7. N. Sri Namachchivaya and W.M. Tien, Stochastically Excited Linear
Nonconservative Systems, Journal of Mechanics, Structures and
Machines, Vol 18(4), 1990,459-482.

8. G.S.B. Leng and N. Sri Namachchivaya, Critical Mode Interaction in
the Presence of External Random Excitation, Journal of Guidance,
Control and Dynamics, Vol. 14(4), 1991, pp. 7 7 0 -7 7 7 .

9. N. Sri Namachchivaya, Mean Square Stability of a Rotating Shaft Under
Combined Harmonic and Stochastic Excitations, Journal of Sound and
Vibration, Vol 132(2), 1989, 301-314.

13



10.N. Sri Namachchivaya and Harry H. Hilton, Stochastic Stability of
Supported Pipes Conveying Pulsating Fluid, ASME, PVP Conference,
Hawaii, July 1989.

11.N. Sri Namachchivaya and G.S.B. Leng, Equivalence of Stochastic
Averaging and Stochastic Normal Forms, Journal of Applied
Mechanics, (ASME), Vol. 57(4), 1990, 1011-1017.

12.N Sri Namachchivaya and Y.K. Lin, Method of Stochastic Normal
Forms, International Journal of Nonlinear Mechanics, Vol.26(6), 1991,
931-943.

13.N. Sri Namachchivaya, Instability Theorem Based on the Nature of
Boundary Behavior for One Dimensional Diffusion, Solid Mechanics
Archives, Vol. 14(3-4), 1989, pp.131-141.

14.N. Sri Namachchivaya, Maximal Lyapunov Exponent for a
Stochastically Perturbed Co-Dimension Two Bifurcation,
Computational Stochastic Mechanics, eds. P. D. Spanos and C. A.
Brebbia, Elsevier, 113-124, 1991.

15.N. Sri Namachchivaya, M. A. Pai and M. Doyle, Stochastic Approach to
Small Disturbance Stability in Power Systems, Lyapunov Exponents ted.
L. Arnold and J. P. Eckmann], Springer-Verlag, 1991.

16.N. Sri Namachchivaya, H. J. Van Roessel and S. Talwar, Maximal
Lyapunov Exponent For Coupled Two Degree of Freedom Stochastic
Systems, [submitted to Journal of Applied Mechanics (ASME)].

17.N. Sri Namachchivaya, Almost-sure Stability of Dynamical Systems
under Combined Harmonic and Stochastic Excitations, Journal of
Sound and Vibration, Vol. 15 1(1), 1991, 77-90.

18.N. Sri Namachchivaya and J.E. Prussing, Almost-sure Asymptotic
Stability of Rotor Blade Flapping Motion in Forward Flight in Turbulent
Flow, Journal of Probabilistic Engineering Mechanics, Vol. 6(1), 2-9,
1991.

19.G. Leng, N. Sri Namachchivaya and S. Talwar, Robustness of
Nonlinear Systems Perturbed by External Random Excitation, Journal
of Applied Mechanics, (ASME), Vol 59(4), 1015-1022, 1992.

20.N. Sri Namachchivaya, and S. Talwar, Maximal Lyapunov Exponent
and Rotation numbers for Co-Dimension Two Stochastic Bifurcation, [to
appear in Journal of Sound and Vibration I

14



& Publications and Presentations

The starting date of this proposal was November 1, 1991. Below is a
summary of the results of the grant which have been published or accepted
for publication or presentation.

5.1 Journal Publications

Copies of the these manuscripts are sent to you under separate cover
and are listed below:

1. M. M. Doyle, Nonlinear dynamics of a rotating shaft subjected to a
periodic axial load, Masters Thesis, Department of Aeronautical and
Astronautical Engineering, University of Illinois, 1991.

2. N. Sri Namachchivaya and N. Malhotra, Parametrically Excited Hopf
Bifurcation with Non-semisimple 1:1 Resonance, Nonlinear Vibrations,
ASME-AMD, Vol. 114, 1992.

3. N. Sri Namachchivaya, M. Doyle, W. F. Langford, and N. W. Evans,
Normal Form For Generalized Hopf Bifurcation With Non-semisimple
1:1 Resonance, to appear in Journal of Applied Mathematics and
Physics, ZAMP

4. M. Doyle and N. Sri Namachchivaya, Nonlinear Dynamics of a Rotating
Shaft Subjected to a Periodic Axial Load, [in preparation].

5. N. Sri Namachchivaya and H. J. Van Roessel, Maximal Lyapunov
Exponent and Rotation Numbers for Two Coupled Oscillators Driven by
Real Noise, Journal of Statistical Physics, Vol. 71(4), 1993.

6. N. Sri Namachchivaya, M. A. Pai and M. Doyle, Stochastic Approach to
Small Disturbance Stability in Power Systems, Lyapunov Exponents [ed.
L. Arnold and J. P. Eckmann], Springer-Verlag, 1991.

7. N. Sri Namachchivaya, H. J. Van Roessel and S. Talwar, Maximal
Lyapunov Exponent For Coupled Two Degree of Freedom Stochastic
Systems,to appear in Journal of Applied Mechanics (ASME).

8. N. Sri Namachchivaya, Almost-sure Stability of Dynamical Systems
under Combined Harmonic and Stochastic Excitations, Journal of
Sound and Vibration, VoL 151(1), 1991, 77-90.

15



9. G. Leng, N. Sri Namachchivaya and S. Talwar, Robustness of
Nonlinear Systems Perturbed by ExLernal Random Excitation, Journal
of Applied Mechanics, (ASME), Vol 59(4), 1015-1022, 1992.

10. N. Sri Namachchivaya, and S. Talwar, Maximal Lyapunov Exponent
and Rotation numbers for Co-Dimension Two Stochastic Bifurcation, to
appear in Journal of Sound and Vibration

5.2 Meetings and Conferences

The PI attended the ASME Winter Annual Meeting in 1992 and the
Fields Institute for Research in Mathematical Sciences (also in 1992) at

which the following results from the research in progress were presented:

N. Sri Namachchivaya and N. Malhotra, Parametrically Excited Hopf
Bifurcation with Non-semisimple 1:1 Resonance [presented at the ASME
Winter Annual Meeting, Anaheim, California, November, 1992].

N. Sri Namachchivaya and N. Malhotra, Homoclinic Chaos and Normal
Forms: Application to Mechanical Systems [presented at the Fields
Institute for Research in Mathematical Sciences, Canada, November,
19921.

6. Personnel Supported by the AFOSR Grant

1. Student Name: Win-Min Tien

Degree: Ph. D.

Thesis Title: Chaotic and Stochastic Dynamics of Nonlinear

Structural Systems

Date of Completion: December, 1992

2. Student Name: Monica Doyle

Degree: Ph. D.

Thesis Title: Nonlinear Dynamics of Hamiltonian and Quasi-

Hamiltonian Systems

16



Normal Form for Generalized Hopf Bifurcation
with Non-semisimple 1:1 Resonance t

N. SRI NAMACHCHIVAYA AND MONICA M. DOYLE

Department of Aeronautical and Astronautical Engineering

University of Illinois at Urbana-Champaign
Urbana, IL, 61810

and

WILuiAM F. LANGFORD AND NOLAN W. EvANs

Department of Mathematics and Statistics

University of Guelph
Guelph Ontario, Canada, NIG 2W1

The primary result of this research is the derivation of an explicit formula for
the Poincare-Birkhoff normal form of the generalized Hopf bifurcation with non-
semisimple 1:1 resonance. The classical nonuniqueness of the normal form is
resolved by the choice of complementary space which yields a unique equivariant
normal form. The 4 leading complex constants in the normal form are calculated

in terms of the original coefficients of both the quadratic and cubic nonlinearities
by two different algorithms. In addition, the universal unfolding of the degenerate

linear operator is explicitly determined. The dominant normal forms are then

obtained by rescaling the variables. Finally, the methods of averaging and normal
forms are compared. It is shown that the dominant terms of the equivariant
normal form are, indeed, the same as those of the averaged equations with a
particular choice for the constant of integration.

t Partially supported by NSF through grant MSS 90-57437, AFOSR through grant 91-0041 and
NSERC of Canada.



Running Title:

Normal Form For Generalized Hopf Bifurcation

Corresponding Author:

N. Sm NAMACHCHIVAYA
Department of Aeronautcal and Astronautical Engineering

University of Illinois at Urbana-Champaign

306 Talbot Laboratory

104 S. Wright Street

Urbana, IL 61801

2



I. INTRODUCTION

When a multidegree-of-freedom dynamical system undergoes a bifurcation, it

usually does so in only a few degrees of freedom. One simple example is the buckling

of a column. If p and pc represent the axial and Euler loads of a column, respectively,

then, as g is varied in the vicinity of gc, the temporal evolution of the motion is

dominated by the critical mode which, in the first approximation, is governed by

S= (- p)x + ax3 . A more complicated situation arises when several control

parameters p are varied in such a way that several modes become marginally

unstable simultaneously. In the latter case, the system is said to undergo a multiple

bifurcation. The simplest and smallest number of equations which capture the

essential dynamics of the original system in the vicinity of Pc are said to be in the

normail form. The theory of normal forms is an important analytical tool for

investigating the qualitative behavior of nonlinear dynamical systems.

The idea of normal forms for nonlinear systems dates back as far as Euler;

however, Poincare [161 and Birkhoff [3] were the first to bring forth the theory in a

more definite form. Poincare [16] considered the problem of reducing a system of

nonlinear differential equations to a system of linear ones; namely,

= Ax + f() to dy Ay, xeRn, yeR. (1)

dt dt

The formal solution of this problem entails finding near-identity coordinate

transformations, x = y + 0(y), which eliminate the analytic expressions of the

nonlinear terms. It has been shown that such a formal solution exists provided the

above system is hyperbolic and the eigenvalues Xj of the diagonalizable matrix A

satisfy the nonresonance condition

).* mX, forif=,2,...,n, Im. =I m,> 2 (2)
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where nL is a vector of integers m = (mi, m2 ,..., mn) with ml > 0. Furthermore, it

was proven that if, in addition to the above results, the eigenvalues lie strictly to one

side of a line separating them from zero in the complex plane, then the formal series

0(y) is convergent.

If the system is nonhyperbolic or condition (2) is violated, the analytic

expressions of the nonlinear terms cannot be completely eliminated via a nonlinear

change of coordinates. The remaining terms comprise the normal form of the system

of equations given by (1). The normal form is dictated by the nature of the linear

operator A. Thus, the nonlinear system in Eq. (1) can be reduced to

d-y = Ay + g (y), ye (3)

dt()

where g is simpler than f. Such reductions have been widely used to study

deterministic autonomous and nonautonomous systems (see Arnold [1]).

In bifurcation problems, the eigenvalues of the linear operator A are composed

of two sets, one on the imaginary axis and the other with strictly negative real parts.

The linear vector space E associated with A can also be divided accordingly as

E = E, ($ E such that x. e E, and x.e E. with x = x, + x,. There are two approaches

to obtaining normal forms for deterministic systems. In the first, as shown in

Guckenheimer and Holmes [121, one first computes the lower dimensional center

manifold onto which the dynamics settle for large times. The dynamical system

defined on the center manifold is then transformed to the normal form through a

nonlinear change of coordinates. In the second method, one systematically expands

the original vector field in powers of amplitudes of the critical modes to yield both the

normal form and center manifold, simultaneously, as shown by Elphick et al. [7]. The

approach adopted in this paper for the computation of the normal form assumes that

the center manifold theorem has been applied to the original system and is based

heavily on the work of Elphick et al. [7].
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The aim of this paper is two-fold: first, to present an explicit formula for the

normal form of a generalized Hopf bifurcation with non-semisimple 1:1 resonance

and, second, to compare the results with those obtained via the method of averaging.

The results for the corresponding semisimple case were obtained by Bajaj and Sethna

[2] using center manifold theory and the method of integral averaging.

Recently, the normal form for a generalized Hopf bifurcation was expressed as

a 4-dimensional real system by Cushman and Sanders [5] and as a 2-dimensional

complex system by Elphick et al. [71 and Iooss and Adelmeyer [18]. Iooss et al. (19]

employed the 2-dimensional normal form given in (7] to examine the steady

bifurcating solutions in nonlinear hydrodynamic stability problems. However, there

are no explicit formulas relating the coefficients of the original system to those of the

normal form. This paper presents explicit formulas for the 4 leading constants in the

complex normal form in terms of coefficients of the original nonlinear system % *th

both quadratic and cubic nonlinearities. The complex normal form presented by

Elphick et al. [7] has recently been analyzed by van Gils et al. [11]. It was shown

that this co-dimension 3 bifurcation problem is more complicated than the closely

related case of the non-resonant double Hopf bifurcation and contains three different

types of co-dimension 1 singularities and 4 different types of co-dimension 2

singularities. Thus, with the help of the results presented in this paper, one can apply

the analysis of van Gils et al. [11] to any physical problem exhibiting generalized Hopf

bifurcation with non-semisimple 1:1 resonance. Furthermore, it has been shown by

Hale [13] that, for systems with linear operators whose superdiagonal terms are

equal to 1, an appropriate scaling can be used to obtain the averaged equations. In

the final section, the averaged equations up to the second order approximation are

obtained and compared with the normal form equations.
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II. BACKGROUND AND NOTATIONS

The problem of interest in this paper is a 4-dimensional one. However, we shall

keep the analysis as general as possible for the time being. Consider a dynamical

system governed by autonomous differential equations in Cn,

y = A ())y + f(y, g) (4)

where f: Cn -+ Cn is a Cr vector field, r Ž 2, A is an nxn complex matrix. x--O is the

trivial solution of Eq. (4) for all values of g (i.e., f(O , g) = 0) and the nonlinear vector

function can be represented as

f(y,') = P (y,p) + P3(y,1)+ .- fk(YA)+'-' (5)

Here, we have expressed the nonlinear terms as a formal power series of

homogeneous terms with degree denoted by the superscripts. We define Hn to be the

linear space of homogeneous vector polynomials of degree k in n variables with range

Cn. Let (e 1 ,e 2 ,..., e)denote the basis of Cn and y=(yi,y 2 ... yn) be the

coordinates with respect to this basis. Thus, an element fk (y,p) of Hk can be

represented in the form of vector-valued monomials as

lkyI~)=~ XfmpW g jmin = k
n ,T

=Z X /X tnmj,.m- (y ym"2... ?yn) e(
•Imlwk 1 2(6)

with dim (i{(y,)) =(n+k-1)!/[(n-1)! k!] anddim (Hnk) =n dim (ifhi(y,p)). Now that a

formal set-up for representing Eq. (4) has been obtained, we can consider the problem

of reducing Eq. (4) to the normal form

± =A(L)x + g(x, 10, g(x,J~fg 2 (x,p)+gs(x,p)+--gk(x) +... (7)
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which, as stated previously, is in a simpler form than Eq. (4) and has all the essential

features of the flow near the equilibrium point of the original system. The formal

solution of this problem consists of determining near identity coordinate

transformations

y = x+h(x) , h(x)= h2 (x) + h3 (x) + ... hk (x) (8)

where x e f0, and f) is a neighborhood of the origin of Cn, such that the analytic

expressions of fAy,p) are simplified to yield g(x,p). Once again, fk, gk and hk a r e

homogeneous vector polynomials of degree k and belong to HnI. Assuming the normal

form reduction up to order k-1 has been performed, differentiating Eq. (8) gives

Y = [I + Dxhk(x)] x

and substituting in Eq. (4) yields

1 =[l + D. hk (x)]l [A (x + hk (x)) + f(x+hk(x))].

Making use of the fact that, for x fe,

[I + Dzhk(x)Y" = I-Dxhk(x) +O(Ixic'k))

results in

i = Ax + ft)+ f(x) +... fk' (x)

+ {f(x)+ [Ahk(x)- Dihk(x)Ax]) + 0(Ixk+1 ). (9)

It is worth noting that the transformation of degree k does not affect the normal form

of order (k-i) but does affect the terms of order k and higher. The task now is to

select hk(x) so that the terms of degree k in the brackets are as simple as possible.

Examining the terms of degree k in Eq. (9) and comparing with those of Eq. (8) yields

Ahk (x) - DXh (x)Ax + fk(x) = gk(x) (10)
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and fj (x) = g (x) for j 2,3,... k-L Introducing a linear operator LA defined by

LAhk = [h, =Ax] Ahk(x) - Dhk (x)Ax.

Eq. 10 can be rewritten as

- LAhk(x) =•j(x)-gk(x) = 71k(x). (11)

The above equation is called a homological equation. LA Hnk -- H~n is called the

homological operator and is linear in the space c, homogeneous vector polynomials of

degree k. Equation (11) is to be solved for hk (x).
k an

Let us denote Rn as the range of LA and let n be any complementary
k k k

subspacetoR in Hn. Hn can be decomposed as follows

k k ~
Hn-= Rý (DWk- k 22. (12)

subpac to) eRnk XEW

Thus, for each Ik(x) e H-k there exists ) andg such that any

given homogeneous polynomial of degree k can be written as

fk(X = gk(x) + T1(X)

and the suitable transformation hk(x) is obtained from

- LAhk(x) = k()(13)

Since the choice of complementary space W! is not unique, neither is the

transformation hk(x) or the normal form gk(x). This nonuniqueness was resolved by

Elphick et al. (7] through a particular choice of inner product. As in [7] (refer also to

Helgason [14]), we can introduce an inner product in H.. To this end, we introduce a

differential operator associated with an arbitrary f.(x) e/H- as
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Tn\ Ia p n rn,

a a0

e-Ie 5f= - ..
IMI k 5;& ) )

Then, for (x), gjk(x) in lin, the scalar product is given by

k, = I -( (x g '( )) zooa il~ al -k 10ask C. &-' -
It is clear that the only terms that will survive are those for which a and 15 coincide,

i.e.

ThusI th ine prdc n sdfne as

((),gjx) •ma k.n, 8! , m!=l m2!..mn!.

mtkThus, the inner product in H,, is defined as

n'(x) , g ýX)) H:= g2 • M' !"

iml Iml-k (14)

Using this inner product, we can define the adjoint operator (LAr* a a

and making use of the fact

Elphick et al. [7] has shown that

ker (LA!) = ker (LA- (15)

k kSince Hn is a finite dimensional space, ker (LAY is an orthogonal complement of Rn

the elements of which we are free to choose. Equation (12) may then be written as
k kHnI = R$ ( ker (LA'). (16)

Now, considering the linear equations in Hk, we have
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- LAhk(x) = lk(x) , LA! gk(x) = 0 (17)

and the solvability condition

(ýk (X) , gk (x))ý/: = 0. (18)

The normal form and explicit formulas for the coefficients can then be calculated

using Eqs. (17) and (18). It is important to note that this normal form depends on the

matrix A and the choice of complementary space wkN. Once the functions fk(x) are

known, the above method can be applied to calculate both hk(x) and gk(x). A recursive

algorithm, similar to that of Chow and Hale [4], can also be employed to compute the

kth order nonlinearities fk(x) given all transformations h(x) and normal forms g(x) up

to order k-1. Both methods have been employed independently herein to calculate the

normal form coefficients which are given explicitly in the Appendix.

III. NORMAL FORM FOR NON-SEMISIMPLE CASE

For the non-semisimple case, the normal form calculations are not as easy as

in the case of a diagonalizable linear operator. However, the calculations can be

simplified using certain well known results in Lie algebra. These will be introduced as

we proceed through the calculations of the normal form for the generalized Hopf

bifurcation

Given a finite dimensional vector space V over the complex numbers C and a

space L of linear transformations of V onto itself, one can define the Lie bracket by

the formula

[P,Q] = (P.Q-Q.P) e L for P,Qe L. (19)
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Then L becomes a Lie algebra and we say P commutes with Q iff [P,Q] = 0. The

result that is of importance to us is the Jordan decomposition theorem which states

that for any Ae L there exist S and N such that

A=S+ N and [S,N]=0 (20)

where S is semisimple (diagonalizable) and N is nilpotent. Moreover, these

decompositions are unique and

kerA = kerS r kerN. (21)

In the calculation of normal forms for generalized Hopf bifurcation with non-

semisimple 1:1 resonance, the linear operator of interest takes the form

i 1 1 0 io) 0 0 ] 0 1 0
A = 0 ico 0 ico +0 0 +

0 -iC 1 = 0 -a) 0 0 0 1 S+N(22)0 -ira 0 -ira00 0 0.

and [S,N] = 0. In addition, the homological operator for any two matrices A and B

also satisfies the relation [LA, LB] = I(A,. This implies that the Lie brackets of LS,

LN and LS*, LN* also commute. Thus, the ker(LA*), which is needed for the

calculation of the normal form, is given by

ker (LA.) = ker L5,. n ker LN..

It is worth pointing out that the above results can also be obtained using the

arguments given in Meyer [15]. Furthermore, the normal form g(z), given in Eq. (17),

commutes with elements of the Lie groups

G = lesA* ise R and S =(eSSse R)
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and the normal form is said to have G - equivariance and a simpler Si -equivariance,

respectively. Since the proofs of these results are similar, only that of SI -

equivariance, i.e.

g(eS) =essg

will be given here. To this end, consider z = ess ý and g (z) = g (ess 4). Taking the

total differential of g(z) w.r.t. the variable s yields

dg (z)
ds = g W Sz.

Now, using the fact that the normal form is such that g e ker (LA*) = ker(Ls*) r)

ker(LN*) and S* = - S, we have

D.g(z) S - Sg(z) = 0.

Combining the above two equations yields an O.D.E for g (z)

dg (z) = Sg (z), seR
ds

whose solution can be written as

g (z) = eESg (z; s = 0) = e3Sg() (23)

This proves the S1 - equivariance. The G - equivariance can be proven similarly by

replacing S by A* in the above steps.

1. Linear Algebraic Calculation of the Normal Form Coefficients

Now we calculate the normal form and appropriate expressions for the

coefficients of this normal form. To this end, consider the homological equation

-LAhk(x) = fk(X).
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It is easy to show that for the semisimple S with eigenvalues

ki, i = 1,2 .. n, LAhk(x) reduces to

Lshk (X) = 7 h k [(n, ),]xm e.
slml=k

and
X), )- As= 0; s = 1,2,...n; I ml 2

is called the resonance condition. The ker (Ls*) is determined by the appropriate

combination of m's which satisfy the above condition. The resonance condition for the

problem under consideration can be expressed as

icO(m 1+m 2 -ma-m4-1) =0, ml+m2+ms+m 4 =k fors=1,2

and

-iwO(mS+m 4 -m 1 -m 2 -1)= 0, m 1 +m 2 +m 3 +m 4  k fors=3,4.

Since mi a 0 and integer, it is obvious that k is always odd and the above conditions

yield

(ml+m2) =f , (m3+ M 4)= 2 fors=1,2

and
(m 1+m 2) =ff , (m 3 +m 4)= k2+] fors=3,4.

2 2

Thus, the non-zero nonlinear normal form exists only for k = 3,5.... However, the

original quadratic nonlinear terms can contribute to the cubic terms as a result of the

nonlinear transformation as will be seen in the subsequent section. Calculation of the

coefficients of the leading order normal form (k=3) is of concern in this paper. Thus, in

an 80 dimensional basis, only 24 vectors lie in the ker (Ls*) and can be written as

(x xs)e.,(xlx2xs)e%,(x~3)ex, (x~x4)e2 , (xlx.x4)e., (x2xje, fors=1,2

(2xXc1)e 3 ,(x 3 X4 x)e 5 , (x 1)e 8 , (x3x 2)e., (x 3 x 4 x 2)es, (x4x 2)e* for s=3,4.
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The action of LN* on these bases can be represented by a 24x24 matrix of the

form
0 10 110 1

CO 00 [0020100
-1 C 0 0 whereC= 0 0 0 0 0 0
0 0 C 000O010
00 -1 C 0000102

L 0 0 0C0 0L J

where I and 0 are 6x6 identity and zero matrices. The 8-dimensional null space of the

above matrix can be easily computed. Making use of this, the basis of ker (LAO) can

be written as

(I2 X3X X I
xI (x1x4- x2x3) xI2X4 X1 X2 X 3 x2x3

' 0 0 0

0 0 0

0 0 , 00 0

(X3(X2x3 -X 1X4) X2X .23(x s-xlx4) ' 3 1 3X1
( 3

2x 2  X3X4X1  8

It is worth noting that the first 4 basis vectors are complex conjugates of the last 4,

as expected. Since any linear combination of these vectors spans the null space, we

can manipulate the given basis such that the resulting normal form is as simple as

possible. This manipulation is performed as follows: the second basis element is

replaced by the vector obtained by subtracting the third basis element from the

second and the sixth basis element is replaced by the vector obtained by subtracting

the seventh basis element from the sixth. This procedure yields the new 2nd and 6th

bases as
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x1 (xIZx " x2x'S) and 0.

0 x3 (x2X( -X} IX)

Thus, the normal form for the generalized Hopf bifurcation with 1:1 resonance can be

written as

i•z)=('(Oi)(:Z),I, al(zlil)+a2(z• 2-i •Z2)) (z)+,(b(zi1,)ibz•• 2 -ýz)) (o)

(24)

where aj = cj +idj, --=ej+ifj, j=1,2. In the above equation, we have

replaced (xl, X2, X3, X4) by (zl, z2, zi, z2). Thus, the second and third equations can

be obtained by conjugating the above equations.

While calculating the coefficients, we shall assume that the original system

contains both quadratic and cubic nonlinearities. Thus, for the problem under

consideration in this paper
l 8y)2 I(y m1ym2 m3 m4)% di (i

ý2 (Y) =f I I f2l;n1M2,m4(Yl Y 3 Y4  e., dim (H4= 4C (25a)
%-l Iml - 2

f(Y)= X f ' (y3Ily'2ym3y'4)e, dim(H4) 80. (25b)

sal Iml =3

We have shown in the previous section that ker (LA) = (0) for k = 2 since

ker(Ls,)f-0). Thus, all the quadratic terms given by expression (25a) can be

eliminated and the transformation which performs this reduction, obtained by the

matrix representation of ker(LA,), is given by
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where
4IC0 0 0 0 0 0 0 0 0 0
-2 -h 0 0 0 0 0 0 0 0
O -1 ioB 0 0 0 0 0 0 0

O 0 0 io) 0 0 0 0 0 0
B= 0 0 0 -1 10 0 0 0 0 0

O 0 0 0 0 3iw 0 0 0 0
O 0 0 -1 0 0 iO 0 0 0
o 0 0 0 -1 0 -1 iow 0 0
0 0 0 0 0 -2 0 0 3iw 0
O 0 0 0 0 0 0 0 -1 3i0z_

and hi2 and ifi• 1 are vectors of dimension 10. Since B is nonsingular, it is easy to

calculate

hB = B'02, h01 fi B'l(f h0 )

and hs~n and h4Zm are the conjugates of h~n and h22m, respectively. The

complete expressions for h• and h~z~, are given explicitly in the Appendix. As

these transformations annihilate all of the quadratic nonlinearities in the given

system, they alter the terms of order 3 and above. We denote the new coefficients of

the cubic nonlinearities as

.3 -8

where f?;in are the original coefficients of the cubic nonlinearities, and t•n are the

coefficients of the new cubic terms generated while eliminating the original quadratic

nonlinearities. The coefficients are indeed functions of the coefficients of the original

quadratic nonlinearities as one would expect. Now, the normal form for the leading
ndnlinearity is given by Eq. (23) and is defined in the space complementary to R4..
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The coefficients al, a2, bl, b2 and their conjugates are calculated using the

solvability condition of Eq. (18). The first 4 coefficients are

al= 1 (3 fal. 2olo + f82;1110 + 10220011 + a,

a2 = %1 a'; 2001- 240210 - &1ilO + 42;1101) + W2
6

bi = 42;OO +

S= 1 (fal0 - 42;Illo+ 342001) +iý

where the expressions for WI, a2, bland b2 in terms of the coefficients of the

quadratic nonlinearities are given in the Appendix. The remaining four coefficients

are obtained by conjugation of the above expressions, i.e.,

a =Wl, a 4 =2, bs=El and b4 =kZ.

2. Recursive Calculation of Normal Form Coefficients

This approach is based on a series of papers by Ponce, Gamero and Freire [8,

9, 10, 17] which are, in turn, implementations of a method of Chow and Hale [4, Chap.

12] which employs a technique developed by Deprit [6] using Lie transforms to

determine the normal form.

In order to remain consistent with the literature, the following notation will be
k

used: define F, Uk, Gk e Hn by

F k=(k-1)!fk(y), Uk=(k"1)!hk(x), Gk =i(k- 1)! gk(x).

The first step is a rescaling to isolate the homogeneous terms of degree k. Letting

x--*ex and y-*ey for e e R, the original system of Eq. (4) becomes
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y=Ay+ (y)
(26)

the near identity transformation, (8), becomes

';k-i
y = X ÷ k> (-l! U (X )

y k2! (27)

and the system in normal form, (7), becomes

£k-i k

1 =Ax + Yk2- Gk(x).
ký:2 (k-i! (28)

Following Chow and Hale (4], the sequence WFkI} is defined by the recursion

relation
k k4+2FjF (+")Fi +lxUi-2, 1=%2,.k, k=Z,...

jn2 (29)

whereF, -k, FI=Ax and

&QaQ
PxQ= 8P

It can be shown (see Chow and Hale [4]) that
k_ kFk=G

This recursion can be represented by a Lie triangle,

(F2) [fz,2

(F13) ?. r e

4F) P- 4~
(FF 2F4[F,]
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The terms in round brackets are from the original system and those in square

brackets are the final normal form. Each term in the triangle depends on those

immediately to the left and above. The indexing scheme used here is different from

that in the above references; the superscript k refers to both the order of the

monomials in the vector and the row in which it appears in the Lie triangle and the

subscript refers to the column in which it appears in the Lie triangle.

The recursion operates across rows of the Lie triangle from left to right. As an

example of what occurs during a recursion, consider the fifth row. F is a vector
5 5

containing the order 5 terms in the original system. To generate F2 , F1 is added to the5

sum of the terms in column 1 above Fj combined with the appropriate U P's;

Fi'xU2 ,FlxU3IF FU4 1 xU 5 . To generate F;, Fý is added to the sum of the
terms in column 2 above F5 combined with the appropriate U P's;

Fx U2, F2 × U3 , F x U4 . This process is continued until Fj is reached at which

time the normal form has been obtained. What is happening as the recursion moves

across the Lie triangle is the accumulation of the order 5 contributions of the near

identity transformations of orders 2 to 5. In column 2, the contributions from

substituting the transformations into the original equations are collected. In

succeeding columns, the contributions from the interaction of new terms generated

by the transformation and the subsequent transformations are collected until finally

in column 5 one has the order 5 terms of the normal form. The coefficient (. 2 which

appears in the sum is a counting term analogous to the binomial coefficient in the

binomial theorem.

Now rewrite Eq. (11) using the new notation

- LAU =Fk -Gk

where Fk is a vector of the order k monomials resulting from the near identity

transformations up to order k-1. If Eq. (11) is rewritten as
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Fk = Gk . LAUk

then
Prj.& _k = Gk

Pr°j k~LF =Gk (30)

and
proj kF=" LAU (31)

However, if (11) is written as

G k=Fk+ LAUk

and it is noted that F1 × Uk = (Ax) x Uk =LAUk, then
Gk pk+F1 k ~

Now consider the recursion (29). The only time U k will appear is when 1= 2, in

which case (29) can be written

Fk .(' )F k-j'xUJ+ Fxk
F; _F•I + 1 : •)1.J j÷ FX uk

j-2

or

k -k I k
F =F2 +Fx U

For/ = 3, Eq. (29) can be written

F;=F+F xUk + 7, P;)k.1
2k-k +F; k j-f2 j-2

or
F; = Fý + F; x Uk.

So, for any 1, 2 1:5 k,

I =Fk+F~xUk
k

It is easy to see that the Fj obey the recursion relations
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+~ I (k : )F kijlXu1P=p +j.2 j -2]-

ik =ik k-1+2

1 k.

This recursion is identical to Eq. (29) except for F, there the F1 x U term was left

out (and thus will not appear in any of the subsequent F,). Thus

-k -k k k
Fk=F =G . LAU.

So Eq. (30) can be used to determine the order k normal form, and if Eq. (31) is

written
Uk -k

U =- LAprOjR•k

the order k near identity transformation can be obtained.

In order to continue on to higher order terms in the normal form, it is necessary

to convert the Fe s into F•/s. This is accomplished using the following correction

k -k -
F,= F,-projRkF, 1=%...,k.

IV. DOMINANT NORMAL FORM

In order to study perturbations of a vector field with linear part given by the

non-semisimple matrix A, we consider the universal unfolding of the linear vector field

Ax used invan Gils et al. [11]

A i+z +=(a, t1i), aeR, j=ji 1 +ip2eC
IL + a ) (32)
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This may be calculated explicitly using the homological equation (10) applied to first

degree polynomials hl(x), in the same manner as (23) for cubic polynomials. The

unfolding parameters X are found in terms of the original linear coefficients to be

a = I{f.iO + e.)1OI and ez4;oo

The above unfolding of A(W.) may also be found from the viewpoint of versal

deformations of matrices, as in Arnold [1], allowing for rescaling of time.

Now, making the observation that zl = 0 implies z2 = 0 and the normal form

commutes with S, we choose a transformation as in van Gils et al. [11]

z1 = re*, z2 = re'4 'w, w = u+iv, 0 = ot+0

which yields three real equations independent of the phase variable 0

f = r[a+u+ r2(Cl + 2d 2v)1

ui = gl-u2+v 2 + r2 (el+2f2v)

V = Rt2-2uv+r 2 (fl-2e2 v)

and 0= v+ r 2 (d1 -2c 2 v).

In order to "blow up" the dominant terms, we rescale the above variables as

r=fEu=fE, v= t, at=t, jfia, gif=201, g2 = O2g2. Introducing r 2=

and dropping the hats, we have, in new time,

p'= 2p (a+ u)+ e2c, p2 +0 (E2)

U'= pl - U2 + v2 + elp + £2f2 pV + O (F2) (33)

V = 2 - 2uv + f1p - £202 pv +0 (E2)

and 0'=v+ £dlp+O(c2)

where

cl = Re(al), el = Re(b 1), e2= Re(b 2)

d 1 = Im(a,), f 1 =Im(bl), f2 =Im(b2).
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V. AVERAGED EQUATIONS

In this section, we shall demonstrate the relationship between second order

averaging and normal forms for the nilpotent case under consideration. To this end,

we make use of the scaling suggested by Hale [13] for linear operators whose

superdiagonals are equal to 1. In order to make the calculations less cumbersome, we

only consider cubic nonlinearities and the nonlinear system can be written as

S= A (g) y + F(Yl, y3) + Fl (y) + F2 (y) + e3 (y2, y4) (34)

where A is as given in Eq. (22) and the nonlinearities of degree 3 can be written in

terms of the original notation as

I ?Bo±o l ~y+ 80 1 0 AY3Y + 8J020 Yl93 + Ps-;O3o ?3) e.

Sul4

F 1 - (8;2100 /1 Y2 + 4O-sO0 YIY4 + ?-0;1110 Y1Y2Y3 + 41011 YlY3Y4

+ 8012 0 Y2? + ?B 002 1 y3y 4 e.

4

1 - (;200YlY2oy l2y + Y;I0 2 Y llYyIY 2 Y4 + Y2 Y3 Y4

+ ?O2 1oY'2y 3 + o,,2 Y3YA4es

4 ?-F3--• je-Sooy3?2÷ 8;201A2Y4÷ 8•0102Y2y24÷ P •oY4)e,.

In order to bring the above equations into "standard form", we make use of the scaling

suggested by Hale [131, which is in line with that of van Gils et al. [11],

Yl = ElI, Y2 = E2x2, Y3 = CX3; Y4 = '4

anu transform Eq. (34) to new variables z by means of the transformation

xj = z2ei"t xj,2 = zie t, j =1,2.
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This procedure yields a set of equations in standard form to 0(02 ) as

i = C X, (z,i,t) + E2 XI (z,it) , z = (z, Z2) (35)

where

xo 0 Z2 ] I fe -b Fa (ziuii,t)1
e -iot F2 (zi,ii,t) [ e -t F2 (z,!,t) (36)

and the I equations are obtained by conjugating Eq. (35). Now, applying the

averaging procedure up to the second order yields

2 - -X aX ° aW aW -X
zi =- M (X0 (z,,t)) + 2 M w + - W - W - xo (zow

t tlaza
(37)

where M is the averaging operator defined as
t

M (.) = un t
tT

and

W(z,i,t) = j X0 dt+ c(z,-Z) , X (z,y,t) = X 0(zi, t) - M (X 0(z,it)}

i.e.

W1 (zit) = cl(z,i-) and W 2(z,1,t) = k(z,it) + c2(z,z-)

with k(z, i, t) defined as

k(z,it)f.J_ o~ ~~ 4_1__ 2o zlzl .'2't - --8e

S2 (o P i4 e ozt z e 2 4i a) C w 24imt

where c is an arbitrary vector function of z and I. The choice of c is made such that

the normal form coincides with the resulting second order averaged equations. We

have made two observations concerning the product terms within the second curly

bracket of Eq. (37). Note, in Eq. (36), that X2 is only a function of zi and il and
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X1 = 0, X1 = 0 Thus, the second order contribution from k(z,it) is identically zero.

The second order contributions to the averaged equations are

E2 M (c2 -L (c,)+ XI1(z,it)1

t

P2 M (2 4;2zi +f 010 -,ýZ2 L (c2)+ X1 zi~)

_KZ '- 2- S) (-Z2where L(.)f 0 = s+ --c l 4 102 Z

Comparing terms of like order in the averaged and normal form equations, the

appropriate choice of the vector c is given by

Cl(Z,Z-) =f al z2 ' cý(z-z-) a-02 11I Z.

Equating coefficients yields

2;2~010 - 02  1 [ 1;0 1 0 - 4ý00 4~;1110]i -1 4 010c kol - ir2200 :gi P2;1101

It is obvious that a, must be real. Choosing a, to be identically zero, a• is obtained

as
( 4[-- olo 1 01 0 2001 °4-11010"

Thus, the averaged equations are

ii = E z2 + E2a1 (z 1 il) z1 + 0(ES)

i2 = ebh (zll) z, + c2 [b2 (zlz2) + (a, - b2) ('lZ2 )] Z1 + 0(e 3 )" (38)

The second pair of equations are obtained by conjugating Eq. (38). As before, we

introduce the universal unfolding defined by matrix A(X) (see Eq. (32)) into Eq. (38),

use the transformation
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Zi = reis, Z2 = reilw, w = u+iv (39)

and rescale the variables as

2 2- 0%

After substituting Eqs. (39) and (40) into Eq. (38) and dropping the hats, we have the

averaged equations in terms of p = r 2 as expressed in Eq. (33). Thus, one can

conclude that the dominant terms of the scaled normal form equations (33) agree

completely with those of the averaged equations.
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APPENDIX

The transformations h2 , i = 1,2, which eliminate the quadratic terms are:"Um

1;0011 00•

h .oo2 +3We4

1;h11o00 [.I. 1;2000)

- L~ + _;1100 ) + i (4e + W2iioo)]

h 2 1 92-;2 + f2( + f2) + i & 2f2;- 0+w; 0 o)1;0200 (04 2 110 202;0000100(2-100)

h 2. (f2 01

1;1010 2;01 W0[10e +

1;101;1010 2;011 + ( 2;1010 1 '0110i)]

h2  (I2 •;00~ ;0

h 29

1;0020 &02 32;00 101

= 100[ WS 1;1010 2;f1001)+i( 2; 1010 - I;ioO 1)

=;10 C0 2I ;1010+ 1.0110 1;~1001 2f;O 10J + i(O( 1;0 1 j

h[21 w(-2f + 'j)+ i (__ f20 of
l;0011 10 3 f;02 2-01 9;01

=- - 1~i;0 0 2+(1011 2 9 ;02

1;0M 0234 9 2; 1;01 2,00 91 fl0002- IO]

2;2000 (D 2;2000

.'1100 2;~2000 2;10
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2.00 CO 2;10 2;2000 2;024

h220 = =

h2;1010 0) - 2;1010

2

h2
2-0020 3w 2-0020

h 2 -1 g +h = -__ [. c (f ,, + f-1) + 1 ( •f- )

h o2  (Ms ie9Ae 1 J2POO2 W Pll+i122W)

The contributions from the quadratic non-linearities to the normal form are

given by the coefficients l , W2, b and b2 and are expressed as follows:

Ai = f;1P2;2000 - 2 ;10 10 -at2;11O0 4

w2 4? 4

+ I 4p 000 - 1421010 4P~1 - JL e21010 e4-1001 - "ael010 el01

f2-,0110 14~;1010 + 41 k210 4 ;1010 P2;0020 f4;1004 2- 18 6'-OM42
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+ L 4,0011&2000)

+'- (fg2iolo4f;2000 - k2;1010 4~1010 12;0020 4~2000

1;ioo 2~ 00+ ti0 0 f2 ,iioo -' f; uo i + 1 fje 1100 12;00+J 4,2;0^ ;01

L4e 4' 4 2 2'

-
4 o14 2010 12 ~o 4oi ' 40110 4o~~t;0O4i

4' 4 4' 4

i22uo ;0102IO10 - 1 f2;0020 
4 :1100 - "' i~%;020 f23;200 - 2;01 3 &2Mo

4 6 '2 '12

i2;10 f t 011O - 1122;1001 4;1001 - a tfl 1001 4;1010 - 1 t2,00 P4;1010
4' 4 4' 4

12-40011 4;1100 11,0011 42000 1 P 2;0002 f24200
12 '4 '6

?.1  . -4 ?A00 + ( f2
1 0  41

(?;1104100 14020? 4 1,00 I0 - 1' :000 4;001

+ 4 110 2;1100 -~ 12;11 sol + 3 ;100oo

+ 1~oi ?11 4.;1010 -1 f20114.;1010 - -2-i2;020 4.;1100 - 2 11;0020 4;2000
66' 27' 27'

27 2$1 3~0000 6 2;1010 4P101 6 1 101104 3 2:0110 4PI10

6 2;1001 4PI10 27 2%i00 %200 3 1A11 4;1001 6 2;f140 0

31



410014;1001 61O0110O41010 1:1001 4,11 4;1010

* -J- fl;0020 4 1100o - J" P2;00 1 f4;11 00- f21001iif 4;2 00 0 + ~ 2;o0~0002 f4;
27 '18 '27 '27 000i

+ -L (1 142;i010 4;101 -~ -1 20020 4;2000 - " f22;101 d&O110 -" 42301 0 4 ;1001

-1f~icji0 4~;1010 + 4 2 ;0110oi24;l101 + 1 2;100 1 4~;1010 + A- 42.0020 4~;1100
3 '3 '81

+ A-. 400204 2000 - 2;0011f4;2000  2 f ~iof; 200 0  fl;t110I;2000o
81 '81 ' 33

if¶~ 1i 0 0 ;oi P-,O 10 2 -0110 t2 0200 + ' f~l;1 00 .i2;001 + 1 i2,-200 i;1001
6' 3' 6 ' 3

I ?.+ JL?. I ? I ?
601 610 ;10 44100 -1O 64;1010 0 + "Il 3%fl10

3 410 S1109 2O203P2O0 3 1;0 3;1001 6 2-0104,10

410 4p 42 400 4$1D0940140
6 116 1 4f1 l 3 9~If

3 11001 4,1001 6 2p10 4;1001 6 1P11 4;'010O 18 1%~1 410

91f2P f2 ?4';f110 L?'O ?42
(34;1010 220009 21 1O0O 24;0092204 2 000
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+ (?2;110 ?2;1100 - ?12000 ?2;1010 + 2 1;1010 ?2gw - 104000 4o

P2;1010 4;1010 - 2' 402 f3;2000 - f2;1001 i4 ;1010 - 14f 2 -0 0 1 1 42000
3 3

lf222+ ; 1010 4;1100 - P12000 4.,1010 + 11 2200 400 -220

2 101 )~;oo-' 020 fO+ 1lt~22 10 10 401 ' f2;01410

1lfavlOlOf24;1oio + 1Lf 22.011 0 f24;1010+ 1f22;100 1f4;10 10 + -Lf202 410
4' 4' 2' 18'

ýL ft-oo 2 0 f4;2000 -r f22,011 4;2000)18 '36'1

* i (--e2;10 10 f,2 OOO - 4,1010 4)1010 +27l-. 41,0020 420

op0O 2710

(024 a10 ?, 410 o 2~ 1  ;10 10 +-00 ?a2101

4 ;1102;10 42;1001 2;104 114002 1;1001 22000

A 40101 i22000 + 1 i221010 d;i0o10 2 t421010 4 ,1001i " fioio01 4;1010
4 4' 4' 4'

+kJ ioLi 6. + 21P020 10061,0020 3ý2000 4201 3g000

+ JL ?, - Ja? ? ? ?. + I?.l?,Io
4 4 %100 P10 4 2;1001 4;1001 4 1;1001 43010 4 21)0 410

JAf40011 4;100 #i pol4M2 j2%002 42000 ]).
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WITH NON-SEMISIMPLE 1:1 RESONANCE
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ABSTRACT 5-parameter family of normal form equations.
One to one resonant Hopf bifurcation has beenA generalized four dimensional, nonlinear and

non-autonomous system is studied. The effect of studied by several authors in the past (Caprino et a].
periodic parametric excitations is examined on systems (1984); Meyer (1984); Krupa (1986)) and recently by vanthat exhibit Hopf bifurcation with one to one resonance Gils et al. (1990), who considered 3-parameter unfolding
along with subharmonic external resonance. The linear
operator is assumed to have a generic nonsemisimple of the vector field singularity. The work of van Gils et al.
structure. In this case, the dimensionality of the system considered a system similar to one presented in thiscan nct be reduced despite the presence of an Si paper but without parametric excitation, and thesymmetry. However, the system is simplifiedconsiderably by reducing it to the corresponding four associated normal form was reduced to three
dimensional normal form equations. The local behavior dimensional first order equations. Here, severalof the equilibrium solutions is studied along with their codimension 1 and codimension 2 bifuation varieties,stability properties. Several codimension 1, 2 and 3bifurcation varieties are obsrved. Some of the global in addition to some interesting periodic behavior, werebifurcations that are present, can be associated with the examined. Furthermore, it was shown that the normalBogdanov Takens and (0, +i, -i} bifurcation varieties.The numerical results, obtained by using AUTO and form of the fob'-rth order autonomous system has an S1CHAOS, indicate the existence of homoclinic orbits symmetry, and hence it is possible to reduce thealong with the period doubling behavior which leads to
chaos, dimension by one, bringing the system to a set of three

equations in an appropriate co-ordinate frame. In this
paper, we consider the corresponding nonautonomous

1. INTRODUCTION generic system. As in van Gils et al. the structure of the
equations in the present case, can be simplifiedThe objective of this study is to investigate the effect considerably by bringing them into their normal-form orof periodic parametric excitations on systems that by using the method of averaging. Here, a modified

exhibit Hopf bifurcation with 1:1 resonance. For this version of the normal form of Namachchivaya et al.
purpose we consider a generalized four dimensional, (1992) is considered which takes into consideration thenonlinear, non-autonomous system. It is assumed that, subharmonic resonance with respect to the forcing
at some critical parameter values, the linear operator frequency, in addition to the 1:1 internal resonance.contains two coincidental purely imaginary eigenvalues However the disadvantage in such a system with
which generically lead to a non-semisimple structure. parametric harmonic excitations is that the
Under these conditions, the system defined on a four dimensionality of the system can not be reduced.
dimensional center manifold is described by a Moreover, in addition to the traditional 3 unfolding
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parameters for the autonomous system, one has to quadratic and cubic nonlinearities, and the linear

introduce 2 more parameters, namely the amplitude of operator A=Dxf(0) has two equal purely imaginary

the forcing and a detuning parameter which represents nonzero eigenvalues along with their conjugates.

the deviation of the excitation frequency from twice the Furthermore, the double eigenvalues are assumed to be

natural frequency. One expects very rich local dynamics non-semisimple, and the time dependency on flx,t) is

in such a system due to the presence of 5 parameters. given explicitly in terms of parametric harmonic

For the problem under consideration, there is an SI excitation. Under these conditions, the system (2.1) can

symmetry and the normal form equations can be further be expressed as:

simplified. The equilibrium points of this simplified

fourth order system extend to the periodic orbits that are y = A y + pfB y Cos .tf t) + f( y,) (2.2)

the relative equilibria of the original four dimensional

normal form. where y E C4, YI,3 = x1 ± i x2. y2,4 = x3 + i x4, p1f and (o are
The system of equations discussed here arises in a the amplitude and the frequency of the parametric

variety of physical problems which have 1:1 internal excitation and B is a constant 4x4 matrix. f(y,ý) is the

resonance under parametric periodic excitation. The nonlinear term. The linear operator, A, has the

problems of parametric excitation of nonlinear following non-semisimple form:

dynamical systems are of importance in several

branches of engineering such as vibrations of beam J io 1 0 0 1
structures under dynamic loads, flow induced vibrations A 0 (0 0 0A (2.3)

and control systems. The major part of this analysis 0 0 -iW I
S0 0 0 _i J

deals with the local behavior of the equilibrium solutions

and their stability properties. We also study the global where i o) is the pure imaginary eigenvalue. In the

bifurcation set associated with Bogdanov-Takens and subsequent sections we study the stability and the

(0, +i, -i) bifurcation varieties. In addition, we observe bifurcation behavior of the system described by Eq. (2.2).

period doubling bifurcation which leads to chaos. Due to

the complicated nature of the computations involved, we

have used symbolic computations extensively. The 3. TRANSFORMATION TO STANDARD FORNM

analytical solutions have been compared with those

obtained numerically using AUTO [Doedel (1986)1, a In order to study the dynamic behavior, it is

general purpose software package for th,' bifurcation desirable to reduce the system under consideration (2.2)

analysis of differential equations and the maps. We to its normal form. The normal form of the

have also used CHAOS [Aronson (1991)), which is a nonautonomous (periodic) linear part of Eq. (2.2) is

SUN-based software program for numerically obtained via a periodic transformation y = v + H(t) v (See

simulating the nonlinear systems. The analysis of the Namachchivaya and Malhotra (1992)), as:

complete global behavior is in progress and we

anticipate presentation of these results in the near "t

future [Namachchivaya and Malhotra (1992)]. b13 V, e

S= Av + ý1 b23' " " e + b 13 V2 . ev=Av~ ~-~ + h.o.t.

2. STATEMENT OF THE PROBLEM b3 l vi e

We consider the following system on a four Lb 4 VI . e + b31 V2 e (3.1)

dimensional center manifold:

k = fix,t) (2.1) We define a new time T such that r = wf t , where

03f = "o ( I - E X ). and X is the detuning parameter. in

where x e R
4

, is the state vector and f'R 4 --- R4 , is the addition to the internal 1:1 resonance, we consider the

non-autonomous vector field which is analytic in its case of subharmonic parametric resonance (k = wiwu

arguments. We assume that the system (2.1) has both =1/2). Without loss of generality, letting woo =1, and using
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Ihe iww time derivative with respect to t, Eq. (3.1) takes The universal unfolding of A, obtained from a four

the fol Iwiing fornr parameter versal deformation given by Arnold (1983), is

expressed as:

"2 A o)-•+"iw+1" b 3 v1 1' + (i+) IA (a (iWo() (3.5)

+ ýV2 + 'v•fb el + h.o.t.
where a = (a, p) and Vs = (VI + i 92). van Gils et al. (1990)

(3.2)(3.2)e •]interpret a as a real crossing parameter and p is

V2  + b1  e b e + interpreted as a complex splitting parameter for the
2 2 2¾e 1 ~

eigenvalues of the linear operator of A. In order to get

1 iv2 f- e V2 eli + hot rid of the time dependent terms in Eqs (3.3), we make the
2 2 (2 L 2 , following transformation,

The prime denotes differentiation with respect to t, and v1 .2 =uý U e( 2  v3,4 = u3.4 e(-3 V2T (3.6)

the other two equations can be written as complex

conjugates of these equations. The nonlinear terms remain invariant under tis
The next step is to include the normal form of the Thenonlinear term srman vriant under titransformation due to S' symmetry and, in order to

nonlinear terms in Eqs (3.2). For a detailed discussion of
the calculation of the nonlinear normal form with a four distinguish the dominant terms in Eqs (3.3), we

dimensional non-semisimple linear operator, one is introduce the following scaling:
referred to Namachchivaya et al. (1992). Following this

2 2
procedure yields the complete normal form of the ul,3 C Z1 .3 I U2 4 = E Z2.4 Pf = E h, and

original system of Eq. (2.2) and is expressed as following: C = E D3, P = E2 U (3.7)

I f 2 v 2  On applying the universal unfolding given by (3.5), the
v i • + v 2 + ý -b 13 V , e' + a l v )2 I + a 2 V ,2 v

2 2 ~transformation given by (3.6) and the scaling given by

vi b13v e"e (3.7), the normal form Eqs (3.3) become
-a2 v v2 I I + Zk[2 -P + v2 +_ 2 b-le

+ a Ivi 2vl + a .2V' 22 - a2 V ,v2v V, + h.o.t, z l' = J Z + [ zl 2 + - +

(3.3)

V 2 + b23 V, e + b13 V2 e") + al viV2 v2 E2[ 1 I v a ,2i)+OE3

2 2 (3.8)

" b~vlv2vl+biv 12 v I+ a2 vIv2 V2"-a,;,v2 2 X z

z2= E zi + 0 z2 + g b23 "I + 2 + b •z1 2i1

+ b2 vi 2 ý2 ) 1 IV + ý- 2 V ~

+ b13 V2 e" ) + (a, " b 2 ) vi v2 +bv 2 V + b 2

:+ a2 vi v 2 v2 - a 2 P v 2
2 + b2 V1

2 v2 1 + h.o.t.

where al, bl, 82, b 2 can be expressed in terms of the

Now consider the universal unfolding of the linear original nonlinear coefficients of Eq. (2.2). It is worth

operafor A as given by (2.3). The two dimensional mentioning that these equations up to O(0)) terms, have

analog of A can be written as: also been obtained by using the method of averaging, as
shown in Namachchivaya et al. (1992). The above

A iW 1 (3.4) mentioned reduced system has 5 parameters. The three
0 iW unfolding parameters (M, 3,12) control the behavior of

31



the eigenvalues of the linear operator A, while g and X. redundant stability conditions are expressed as:

control the extent of the forcing in terms of its amplitude

and the deviation from the subharmonic excitation TI : 53< 0

frequency. With the help of these parameters, it is

possible to explore the local dynamics of the system in T2 : + V 10 ? + (-2 + uf > 2? b2  4 3j

the neighboring regions. In order to explore the 2
dominant dynamics, the time t is rescaled as v = t/c so T3 u2 < 1)30 u.! + +4

that in the slow time Eqs (3.8) take the following form:
where,

2l = 0 .I +2 Z2+=R+OC)lt X -2• 52 u2 4D2

2 o 2  2 ~P * U~

(3.9) and

t2 = u zi + P3 z + gb +i 2 + b, z 1
2 i 1 + O(C)

2 402 (4 4 +2 X2 + gb2) (4A)

where gb = g b23 , and the dot denotes differentiation with 4 +),
2)

respect to the slow time. Thus T2 and T3 completely determine the stability of the

4. STABILITY OF THE TRIVLAL SOLUTION linear operator L once T1 is ensured. The typical

stability region for the trivial solution of(4.2) is shown in

It is clear that z =0, i = 0 is the trivial solution of the Fig. (I) in (-u1. u2) parameter space, where T2 represents

normal form equations, and as a first step we consider the re-ion outside the circle centered at (-rio, -u, , with

their stability. Transforming Eqs (3.9) to real variables radius gb. whil,_ T3 represents the region on the left side

(x1, Yl X2, Y2) by means of the usual transformations of the parabola described by 122 + u 30 Ut = V40.

x,= (z, + it)/2, yj = (z, -i)A(2i) and

12 = + ÷ 2 ) /2, y2 = (z2 - i) A(2i), 5. EXISTENCE OF NON-TRIVIAL SOLUTION

In order to examine the existence of the non-trivial
yields the following set of equations: equilibrium solutions, we need to transform Eqs 3.9 into

a convenient coordinate system. The structure of these
0 equations suggest the coordinate transformation of

I 0 (zI, z2) to the new coordinates (r, 0, u. v) by using-

c2=L y)(0 1 +f (4.1)
Y2 Y2 C2 z[ = reis z2 = re' (u + iv) (5.11

2X2y+ y3) d2 x3 ÷ y2)
L c 2 yl + yl I 4 + X1 yl where (r, u, v) E R3. and 0 is the phase vanahi" This

where leads to the following set of four coupled equations.

A3 - /2 1 0 p = 2p (0 + u) + o(E)

L= [VU2 g.0/2 (4.2) U = UI +(v2 -.u 2) + c2 p + gb cos20 + Q()

U? (Ul" -gb) V2 3 V = U2- 2 u v + d2 p- gb sin26 + O(E)

and "a and u-2 are the real and imaginary parts of the 0 v + + O(E)2
scaled complex splitting parameter u, and C2 and d2 are

the real and imaginary parts of the nonlinear 4.oefficient where p = r2  > 0 This coordinate transformation
bj in Eqs 3.9. For the linear operator L, the non weeP=r ,Ti oriaetasomto

involves a singular change of the coordinates, which
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S ,,s.5ncts the applicability of Eqs (5.2) near p = 0, but tlis where

posibihity has already been considered in the previous a = (c 22 + d2
2)

section. In the absence of parametric excitation (i.e.,

gb = 0 and ), =0). Eqs k5.2) reduce to a set of three coupled b a 2[c2 (Ul + Uo) + d2,(X)2 + U2011 (5.7)

equations (in p. u, v), independent of the phase variable 0

and a fourth equation describing the evolution of 0. c M ( 1i + Uio)2 + (02 + X2o)2 - 90

which is precisely the form studied by van Gils et al.

(1990). The parametric excitation acts to couple the and ulo and 1U20 are defined in Eqs (4.4). The non-trivial

phase (0) equation with the other three equations. The equilibrium solutions (5.5) are admissible only if p is real

equilibrium points of Eqs (5.2) extend to the periodic ar ' positive.

orbits of the normal form of the original system. Thus According to Implicit Function Theorem, these

the study of the non-trivial equilibrium solutions of the equilibrium solutions (5.5) extend smoothly to the

above system is vital to our analysis. The dominant part equilibrium solutions of (5.2) for small r > 0. if the

of Eqs (5.2) is Jacobian matrix (Jo) of (5.5) is nonsingular. The

Jacobian matrix (Jo) is given by:

p = 2p(O + u)

t! = u1 + (v 2 -u 2) +c 2 p+gbcos2o 0 2 p 0 0
(5.3) j= c2 20 X• e,

v = u2 -2uv+d 2 p-gbsin2 d2 1. 2P e2 (5.8)

00 1 0
T e =v+~ (5)J 2  58

2
where

The equilibrium solutions of Eqs (5.3) can be obtained by e, = - 21V2 + U20 + d2p], e2 = 2 [,uI + vlO + c2p]

solving the following algebraic equations

Det [J,] - 4pfh + ap], (5.9)
•+u =0 12 PI

'I + (v2 U2) + C2 P + gb cos20 = 0 a and b are given by Eqs (5.7). We observe that if the
(5.4) discriminant (D) of the quadratic equation (Eq. (5.6)) is

u2 - 2 u v + d2 p - gb sin2o = 0 nonzero, then the Jacobian Jo (5.8) is nonsingular, i.e.,

v + V/2 = 0 D=0b -4ac)Ž0 =* DetIJO]*0 except where D=0

Eqs (5.4) yield the following equilibrium points This implies that the equilibrium solutions (5.5) extend

2b+ .4 ac locally in e, to the equilibria of (5.2), except where D is

p = 2zero. Throughout this investigation the nondegeneracy
2acondition i.e., (c22 + d2

2 ) > 0 is assumed to be satisfied.

u = - Eq. (5.6) suggests that p may have 2, 1 or 0 equilibrium
(5.5) solutions that satisfy the requirements on p. Depending

v = -upon the values of the parameters we have the following

0 = Isin" [U2 -2uv+d 2 p- scenarios.

Case A:

p satisfies the following quadratic equation: The following should be satisfied for two
equilibrium solutions of p to exist, which would lead to

a p2 + bp + c = 0 (5.6) rpal and positive values of p.

A.1: c2 (u, + ujo) ÷ d2(1#2• u o) < 0
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2v

A2: (u + •u2 + N +UJ - gb2 > 0 04 42) N0:4802 2

+e6:32  -22 ).2 2.

Case B: -32 c.p -64eA 2 d2 p - 16X X2u2 d2

If a > 0, and c < 0, Eq. (5.6) will have only I root that
satisfies the requirement on p. In this case, the sign of 2 64{32 p2.16 x 2 2 p2] > 0

the coefficient b does not affect the number of
equilibrium solutions of p, but it determines the
magnitude of the positive root of p. Thus, the following where p is given by (5.5). Due to the complex nature of
condition needs to be satisfied for only one root of p to these conditions, it is difficult to comment on the nature

exist, of the stability of the non-trivial equilibrium solution.
Figure (4) indicates the several solution branches of p,

B.I: ({u + V1o) + (u2 + 'U2o} _ gb2< 0 which are given by:

2
Elsewhere in the parameter space, p does not have . - b - 4 ac (6.2)

a permissible solution. Figure (2) shows the typical 2a 2 a

regions where 2, 1 or 0 non-trivial equilibrium solutions ,2
of p exist for different values of the nonlinear P I (" + ,'aib < 0,c >0) (6.3)2a 2 a

coefficients. For both cases (Fig. 2a and b), there is one ÷+1  4 2-•- ac
permissible root inside the circle, two such roots outside 2a + 2a )lb < 0,c<0 (
the circle between two tangent lines and no real and +2 2 . b-4ac
positive roots elsewhere. Furthermore, the second 2a 2a
stability condition for the trivial solution T2, and the
existence condition A.2 and B.1 are given by the same Clearly, the lower branch (p-) violates N4, which

circle centered at (-u0o, -U2o)- For the nondegenerate requires:

case (a > 0), various possibilities for the number of non- P >a

trivial equilibrium solutions are shown in Fig. (3),
where f(p) is plotted vs. o. Thus p- is an unstable branch of the non-trivial

equilibrium solution. It can be shown that p+ and p-1

branches are unstable since they violate the sufficiency
.STABILITY OF THE NON-TRIVIAL SOLUTION condition (N5). Numerically it can easily be checked that

part of p+2 equilibrium branch satisfies all five
In this section we discuss the stability of the non- conditions of stability (Ni to N5). The complexity of the

trivial equilibrium solutions obtained in the previous computations hinders the calculation of the stable part of
section. The Jacobian matrix (5.8) has a dependence on p+2 equilibrium branch, analytically. Sometimes the
the equilibrium values of p, which in turn depend on the fourth condition (N4) can provide important information
system parameters in a complex way as given by Eqs About the stability of the non-trivial equilibrium solution
(5.5). Using the Routh-Hurwitz criteria, we arrive at the branches.
following stability conditions that must be satisfied for
the non-trivial equilibrium solution (if it exists):

7. BIFURCATION ANALYSIS
NI: p<c0 NI 02 In this section we describe the bifurcation behavior
N2: (ul + U1o) < 2 + - 2 c2 p associated with Eqs (4.1). The steady state solutions of

(4.1) represent periodic solutions of the original system.
N3: (20(+ 1 + + X •2o + 2(2 c2 + X d2) P) > 0 In this system, several codimension I and codimension

2 bifurcation varieties are detected along with a
N4: (L + ap > 0 (6.1) codimension 3 singularity. One is referred to
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amaichchivaya and Malhotra (1992) for a detaild provided Ti and T2 are satisfied. In this case, the linear

dcscription of the necessary conditions for the different operator L has a pair of pure imaginary eigenvalues

bifurcation varieties to exist. Following is a brief with nonzero imaginary part at the critical value of the

description of each of these bifurcation varieties that are parameters. This bifurcation variety occurs along a

detected in our system (4.1): generic path transverse to the curve 1), which is depicted
as parabola in in the parameter space (W , u2), as shown

7.1. JOmleBifturaion: in Fig. (1), provided other stability conditions are

This bifurcation variety occurs when one of the satisfied. The dynamics of the system (4.1) can be

eigenvalues of the linear operator L passes through zero. studied on a two dimensional canter manifold. Once

\Wlhen this happens, the condition T2 is violated. Under again, for the same values of 0, ., gb and vI, the

these conditions, the trivial solution loses its stability corresponding two dimensional center manifold can be

and a non-trivial solution with p > 0 bifurcates from the expressed as:

trivial solution. For fixed values of 0, X and gb, condition

T2 can be depicted as a circle (S) in the parameter space A. at cr= -0.705354,

(ul ,12), as shown in Fig. (1). Along any generic path =r [(0.51,,-O.7T1 2 )+(3-8C2-7.18d)r2 +
transverse to Rý, the stable trivial solution would lose its 0 [0.426+(.0.5 ll.0-8T12)+(.4.2c2.8.45d2)r2 +

stability (provided TI and T3 are satisfied) through =

simple bifurcation, when the following condition is
satsfid:B. at u2cr = 0.705354,satisfied:

22 2 = r [(0.5 %l+ 0.7 r12 ) + (2.86 c2 + 4.8 d2) r2 +...I
+ D3) + ("2 + u20) = gb (7.1) 8= [0.568+ (05%+06T)+( 2.7 2 +4.1d)r2 +.

When the linear operator L has a zero eigenvalue, the where T11 and r12 are the perturbations in the critical

system (4.1) can reduced to its corresponding one values of ul and '2. One can easily observe that the

dimensional center manifold. If we fix 13, X, gb and ul at periodic equilibrium branches, as described by these

-0.5, 0.1, 0.5 and 0.0, respectively, the one dimensional center manifold equations, have the same dynamical
manifold, in terms of the nonlinear coefficients (c2 and behavior as observed numerically, in the neighborhood

d2 ) and the perturbation parameter T12 = V2 - O2cr, is given of the critical value of the bifurcation parameter V2

as: (Fig. 7).

at 2cr = - 0.484446, 7.3. BogdaoTakens Bifuratio

r= w 2.13 12" 19.98 TI2
2 + (c2 + 1.76 d2) w2  Now we study the possibility of the intersections of

and, two codimension I bifurcation varieties, the simple
bifurcation £ and .the Hopf bifurcation l). At this
intersection (92) we have two eigenvalues of the linear

at "2cr = 0.484446, operator L, becoming zero, where C2 is defined by:

w = w"- 1.49 T12 - 6.97 T12
2 + (c2 - 1.8 d2)]w2( 2)4 D ulV + 2 X. u2 - ft(4 0 2 + X 2) = 0 (7 .3a )

It can be easily verified that the nature of the non-trivial

equilibrium branches, as captured by these center (ul + U1o? + N2 + 2 = gb2(7.3b)
manifold equations, agrees qualitatively with the

numerical results (Fig. 7). These equations lead to the following two critical points

J 7.2. Hoof BiQ~ft tn: in (VI ,V2) parameter space.

This bifurcation variety occurs when condition T3 is

violated, i.e.:

u2 = )30)ol + u4o (7.2)
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VCF U10 ± gL of 33 and b3 can be scaled to unity by rescaling other
variables. For positive values of u2, as U2 is varied from

*2 gb 0 (7.3c) zero for a fixed value of ul, we obtain the pha~.s portraits

-- 4[ 2) 6, 7, 8, 9, 10 and 11 as indicated in Fig. (5), these show
various local and global bifurcations and completely

At each of these critical points the linear operator can be agree with the numerical results presented in the next

brought to the following form: section.

0 1 0 0 1B. u,. = 0.19775, u, -0.54752

0 0 0 0 The corresponding values of a, , a., a, and b, are
Lcr =(7.3d) given as following:

0 0 X3 0 a 1 =0.1 71 1+0.9rT2 1 Cr,=0.8rl1- .r1 2

0 00 X4 a 3 =0.1c 2 +0.7d2, b3 =2.6c 2.- 4.15d 2

For C2 = 1. and d2 1., a3 > 0 and b3 < 0, the magnitude
where X3 and X4 represent the two stable eigenvalues of of a3 and b3 can be scaled to unity as before by rescaling

L at the critical points (7.3c). Dynamics near this other variables. For the negative values ofU2 , once again

nonhyperbolic fixed point can be studied by examining as V2 is varied from zero for a fixed value of u), we obtain

the equations defined on a two dimensional center the phase portraits 5, 4, 3, 2 and I as shown in Fig. (5).
manifold. The procedure to reduce the four dimensional Thus combining these two cases we can can construct

system to the corresponding two dimensional center partially the bifurcation diagram for the original

manifold is fairly systematic. Once the reduction to the problem.

two dimensional center manifold is achieved, we obtain Depending upon the values of a3 and b3. two distinct

the corresponding truncated normal form (Gamero et cases of unfolding (i.e., I: a3 > 0, b3 < 0 and 11: a 3 < 0,

al. (1991)) Now we compare our system with a similar b 3 < 0) are possible for this bifurcation variety. As

system studied by Takens (1974), which is as following: mentioned before, these two cases are completely studied

by Takens (1974) and Guckenheimer and Holmes (1983).
*i = w2  The other two cases (Ic: a3 > 0, b3 > 0 and l1c: a 3 < 0,

*1 a= W1 + CE w2 + a3 w1 3 + b3 w12 W2  b3 > 0) can be constructed from I and II by reversing the

where caL and a2 are the unfolding parameters, wl and sign of W2, a2 and time. Table I shows the possible cases

w2 are the two dimensional center manifold, and a3 and of unfoldings that can occur for all possible

b3 are the nonlinear coefficients. Considerable research combinations of c2 and d2 , near the two codimension 2

has already been done on this bifurcation variety, bifurcation points A and B.

Guckenheimer and Aolmes (1983) discuss the details on

the global bifurcation behavior associated with this class Table 1

of bifurcation. Possible unfolding Possible unfolding
If we fix 0$, X and gb at - 0.5, 0.1 and 0.5 respectively, Case P Ab uBl(A) (B)

the linear operator (4.3) has double zero eigenvalues at

the following critical parameter values of u, an u2 : 02 0, d2 >0 IIc I. Ic

c2=0,d2>0 IIc I
A. -u,. =0.29725, u% = 0.44752

Ifi, and T12 are the small perturbations in u, and c2>0'd2<0 I, IC, ll . Ic. Ic

us., then the corresponding values of a,, c 2 , a3 and b3 c2 = 0, d2 < 0 I 1C
are given in terms of ilI and rh and the original c2<0,d2>0 1, 11, 1 I,

nonlinear coefficients c 2 and d 2 , in the following
c2>0, d2 = 0 I1C Ic

manner:
az 1=-0.111 1 -1.09rT2 , ou=0.97rlI-1.4r12  c.2<0, d2<O I i1. IIc
a 3 = - 0.134 c2 - 1.34 d2 , b3 = 6.26 c2 + 8.28 d2  c 2 =0 1 __

For c2 = 1. and d2 = 1. a 3 < 0 and b3 > 0, the magnitude
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7.4. Simnle and HonfBif'cation Variety21 4.72 c2 - 42.66 d2

In this case, the linear operator has a simple zeru a22 = 55.84 c 2 - 142-25 d2

eigenvalue along with a pair of pure imaginary a)=0.64

eigenvalues for some critical value of the parameters.

Following are the requirements for the simultaneous expressed in terms of 11 and Tl2 which represent the

existence of simple and Hopf bifurcation varieties: erpressed in term s of ul and V2 from theperturbations in the values of '1I and 1)2 from their

critical values. i.e.,
(.l + U10? + (U2 + U2 ,? =gb2 (7.4a) l11 = U1 -1 ) lcr, 12 = U2 2cr

where '3 lcr =- 0.175, V)2cr = 0.455, and aij's, the

4 3 PU1 - 2 U u2 - 03(20 +32 X2) = 0 (7.4b) nonlinear coefficients of the the normal form, are given

in terms of nonlinear coefficients c2 and d2 .

~2 42) We notice that the 0 equation is decoupled from the
ul < 313P + (7.4c) r and z equations, so we can study the planar system

(r,z) independent of 8 and later interpret the results for

These conditions lead to the following critical point in the full three dimensional system (r,G,z). A rescaling

(U1,1)2) parameter space: procedure can be applied to the first two equations of 7.4f

to bring these to the form described in Guckenheimer

U1, 2 X2) + :1:2 and Holmes (1983). After rescaling, these equations up

0 - + ) 2 2 2 -4to third order are expressed as:
13 41 +X +)

(7.4d) f r(;L,+ r2+bz 2 )

= -O3k.+ 21 2 gb z g z(p2+cr 2 +dz 2 )

13[(412 +X ~where d=±l. b=-•t2- and c=±--L

At the critical point, the system can be reduced to its Ia22 laiiI
This system has been studied by Takens(1974), Langford
and Iooss (1980) and Holmes (1980). In this work, we use

operator assumes the following form: the same numbering scheme as given in Guckenheimer

o -0) 0 1 and Holmes (1983). They classify 12 different cases of

= : • 0 0 (7.4e) distinct unfoldings. Table 2 shows the possible cases of

0 0 0 unfoldings that can occur for all possible combinations

of c2 and d 2, the nonlinear coefficients of our original
The structure of the linear operator completely normal form equations.

determines the normal form for the linear and

nonlinear parts of the three dimensional center- Table 2

manifold equations. If we fix 1, ), and gb at -0.1, 0.1 and

0.5 respectively then the resulting normal form, in Case Possibleunfoldings

cylindrical co-ordinates is given as: c2 > 0, d2 > 0 Ia, Tb, II, Ill, V, VIa, VIb, VI~a, VIIb

c2 =0, d2 >0 11, VIa, VIb
r (g, + a,, r 2 + a,2 z 2 ) + h.o.t, c2 > 0, d2 < 0 Il., VIla, v

z ( 12 + a 21 r
2 + a 22 z2 + h.o.t. (7.41) c2•0,d2<0 111, Vila, Vc 2 =0i, d2 <O III, VIha, VIlb

0= w + h.o.t. c2<0,d2>0 11, Via, VIb

where, c2 >0,d 2 =0 III, VIIa, VIlb
c2<0,d2<0 11, 111, INa, IVbVlaVlbVIla,Vltb,VllII

0 .04 1l~ 4+ 0-95T712  c2 <0,d2 =0 II, Via, VUIb
IL2  2.2ri1 - 5.6T12
a, = 0.58 c2 + 3.42 d2  If we start with system (7.4g) and consider the case where
a2 --5.64 €2 + 68.15 d2
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c2 d2 = 1.0, one can easily notice that the resulting O, X= 0, ui =D[2 and "2 =-gb 17.6)

system corresponds to Via class of unfolding. The
bifurcation set and the associated phase portraits for this This is also a degenerate bifurcation variety (C3). Along
class of unfolding are discussed in the literature. When a path through (L3, the trivial solution may lose its
viewed for full three dimensional flow of Eq. (7.4f), these stability through (0, 0. ± i} bifurcation variety.

results qualitatively match with the phase portraits The trivial solution may lose its stability in one of
obtained by numerically integrating the original normal the many ways mentioned in this section, giving rise to a
form equations (Eqs (4.1)) near the relevant parameter non-trivial steady state branch or a periodic equilibrium

values, branch of solutions. The non-trivial equilibrium may
also lose its stability through a secondary bifurcation.

7.&. Double KopfBifumation adetv The secondary hopf bifurcation occurs when condition
Now we consider the case where the linear operator N5 is violated. In this case a, secondary equilibrium

L has two pairs of identical purely imaginary branch of periodic solutions is generated, These periodic
eigenvalues. The conditions for this codimension 2 branches may lose their stability after going through a
bifurcation variety can be simplified to the following: period doubling or homoclinic bifurcation, which may

lead to chaotic behavior. The other bifurcation varieties

X = 0, I =0, ul < 0, u2 = gb and u)1
2 + v 22 > gb2 (7.5a) (of higher codimension) are also possible, but those are

not considered here.

Under these conditions, the linear operator takes the
following form:

8. NUMERICAL SMIULATIONS[ 0° 1 0
0 0 0 1 Numerical computations were performed in orderLH = ]u b -) (7.5b(u + to verify the results obtained in the previous sections and

S (u - gb) 0 0 j to study in more detail the various bifurcation varieties

and the structure of the periodic orbits. The numerical
Whether LH will have the semisimple structure or non- simulations were carried out using AUTO, a software

semisimple, depends upon the value of gb. For the package for continuation and bifurcation problems in
stability of the trivial solution, we require D < 0, if P = - E, ordinary differential equations. The structure of the
where 0 < E << 1, the typical bifurcation diagram for this periodic orbits was studied in detail using CHAOS, a

case is presented in Fig. (6). Along a path, transverse to versatile software for simulating nonlinear systems.

V2, the trivial solution loses its stability through double These numerical simulations were very lhelpful in
Hopf bifurcation as 0 -) 0. In fact A2 = ± gb is the confirming the bifurcation behavior obtained through
degenerate form of the 1) curve as P -. 0 and IL - 0. analysis and in providing a substantial clue for the new

2 phenomena, which were global in nature and not
1): U2 =" U1o•i + •O4 (7.5c) detected through the theoretical analysis. The

As P -• 0 and X -4 0, we have u30 -ý 0 and u40 -+ gb2 , parameter regions where period doubling or chaos may

thus u2 = ±gb. occur, were located as a result of these simulations.
Figure (7) shows the 1-parameter bifurcation

7.A, Takensand onf Dfumadmn diagram for the normal form Eqs (4.2). In this diagram
Alongwiththeassortmentfi n Ithe coordinate yj is shown vs. u,, as u, is varied between

Along with the assortment of codimension 1 and

codimension 2 bifurcation varieties, we may also have - 1.0 and 1.0, while 3, uv, X and gb are fixed at - 0.5, 0.0.

0.1 and 0.5, respectively. The nonlinear coefficients c,
thecase along where ithe ao tr a pair of zereimagaro and d, are fixed at 1.0. By changing the sign of either c,

eigenvalues Thisongwith 3 pairofpurcatn iarinay h or d2 , the orientation and the nature of the stability of theeigenvalues. This codimension 3 bifurcation variety has notrvaeqibiu adproicrnhscage

not been studied in detail. The conditions for the linear butrtheqbrion behior rans quala el

operator L to go through this bifurcation variety are as sml f es bifurcation vaiey inathese

following:similar for codimension I bifurcation variety. In these
diagrams the solid (dashed) curves represent the s -Ni.
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,un,,ablc) stationary solutions, solid (open) circles region where the Bogdanov Takens bifurcation occurs.

represent stable (unstable) periodic orbits and solid At u 2 = 0.3589, one stable periodic orbit is seen , which

•open) squares represent Hopf (Simple) bifurcation goes through a period doubling bifurcation at v, = 0.35882

varieties. As 'u2 is increased from -1.0, the unstable (Fig. (9a & b)). These periodic branches go through a

trivial equilibrium branch first gains stability through a cascade of period doubling bifurcation sequences, and

Hopf bifurcation (at label 2), which results in a finally become chaotic at Ah = 0.35875 (Fig. 9e & f0. This

equilibrium branch of stable periodic solutions. The chaotic behavior quickly changes into a regular two

trivial solution loses its stability through a simple period orbit structure, which also goes through period

bifurcation and results in an unstable non-trivial steady doubling sequence and leads to another chaotic attractor

state equilibrium branch (at label 3). As u2 is increased (at % --0.35855).

further, the trivial branch of equilibrium goes through a Now, in order to study the bifurcation behavior near

Simple and a Hopf bifurcation and results in a stable (0, +i, -i4 singularity, we fix 03, u1 , X and gb at - 0.1. - 0.3,

steady state branch (at label 4) and an unstable periodic 0.1 and 0.5 respectively, while fixing c2 and d2 at 1.0. As

branch of equilibrium solutions (at label 5). This non- noted in the previous section, this singularity occurs at

trivial equilibrium branch loses its stability through a (•,, = - 0.175, %2, = 0.455). In this case (Fig. (10)), the

secondary Hopf bifurcation and gives rise to a secondary steady state bifurcation behavior is similar to what had

branch of stable periodic solutions. This matches been observed earlier, but the nature of the periodic

identically with what has already been shown in Fig. 1, solutions which result due to secondary hopf bifurcation,

2a and 4 of the previous section. is different. Both the periodic branches (through labels 4

The periodic branch (through label 2) approaches and 6) lose their stability after going through a period

the unstable non-trivial equilibrium branch and loses its doubling bifurcation. Figure (1la-e) shows the phase

stability by going through a homoclinic bifurcation. The portraits near the u2 values where the period doubling

transition from the stable periodic orbit to the homoclinic sequence occurs, and finally the flow becomes chaotic at

orbit is clearly visible in Fig. (8 a & b). The labels in this ut = -0.352.

diagram (Fig. 8) correspond to the labels in Fig. (7). The To conclude, the numerical results confirm the rich

unstable periodic branch (at label 5) rises up and tends to variety of local bifurcation behavior observed

approach the unstable non-trivial equilibrium branch, analytically. Codimension I and codimension 2

but it merges with the secondary branch of stable bifurcation varieties are observed in numerical

periodic solutions (through label 11). A very interesting simulations. In addition the numerical simulation

phenomenon is observed just before the merger. The exhibits breaking of the homoclinic orbits, change in

unstable periodic branch (through label 5) goes through stabilities, rich periodic behavior and the period

a cascade of period doubling bifurcation, which doubling cascade leading to chaos. These bifurcation

eventually leads to chaos (Fig. (9)). Precisely at the diagrams give a clue to study the global bifurcation

merging point a homoclinic orbit is observed (Fig. (8d)). behavior that is associated with the Bogdanov-Takens

This homoclinic bifurcation is due to the proximity of and (0, +i, -i) bifurcation varieties, which were described

Bogdanov-Takens biftarcation point. The lower branch of in the previous section.

the non-trivial equilibrium solution (through label 4)

also loses its stability through a secondary bifurcation,

which results in a symmetry breaking stable periodic 9. CONCLUSIONS AND DIRECTIONS FOR FACuRE

branch, which rises up and goes through a period RESEARCH

doubling bifurcation near the unstable trivial solution In this study, we analyze the stability and

branch and ends with the period becoming very large. bifurcation behavior of a parametrically excited, four

To study the period doubling sequence and the dimensional nonlinear system under the combined

possibility of chaos, computations were performed using conditions of one to one internal and subharmonic

CHAOS near the point where the change in stability parametric resonance. The stability properties of the

occurs for the global periodic branch (from label 5). trivial and non-trivial solutions of the 5-parameter

These computations were performed for the same values family of normal form equations were investigated and

of parameters, except A), was set at 0. 1 to get closer to the
various codimension391 2 and 3 bifurcation varieties were
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or 0 non-trivial equilibrium solutions depending upon Linear Part," International Series of Numer
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Fig. I: Stability boundary for the trivial solution (for
1=-0.5, = 0. and gb = 0.5). The shaded part -1.0
indicates the stable region. Si, 1) and C2 indicate .1.0 4.5 0.0 1. 3.0
the simple, Hopf and Bogdanov Takens
bifurcation varieties respectively.
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Fig. 2: Existence of the non-trivial steady state solutions
for 0 = 0.5, -. = 0.1, gb = 0.5 and (a) c2 = 1., d2 = 1.
(b) c2 = - 1., d 2 = 1., The number inside the small
ellipse indicates the possible number of non-
trivial equilibrium solutions that may exist in
that region.

Fig. 3: Graph of f(p) vs. p. Various possibilities are
shown for the existence of non-trivial
equilibrium solutions of r for the nondegenerate
case (i.e., a > 0). (1).b<0, c>0, D>0, (2).bc0,
c<0, (3).b>0,c<O, (4).b<O,c>0,D<0.
(The dot indicates the possible non-trivial steady
state solution.)
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Fig. 9: Phase plane trajectories (xI- yl) for various values of i2; •= -0.5. X.= 0.1,
gb = 0.5, vi = 0.1, (a) U2 = 0.3589, (b) U2 = 0.35882, (C) V2 = 0.3588,

(d) u2 = 0.358785, (e) u2 = 0.35875, (f) Same as (e) but in (x2- YI y2) plane,
(g) 2 =0.3586, (h) u2 =0.35855
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Fig. 11: Phase plane trajectories (xj - yl) for various.
values of V32 for the upper periodic branch of
Fig. 10. (P = -0.1, X = 0.1, gb = 0.5, u. - 0.3),
(a) V2 = 0.357. (b) V32 = 0.355, (c) V2 s 0.353,
(d) u2 = 0.352, (e) Same as (d) but in (y1 -y2-x2)
plane.
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G. Leng Robustness of Nonlinear Systems
Perturbed by External Random

N. Sri Namachchivaya
N. ri Mem.ASME Excitation

S. Talwar The effect of external random excitation on nonlinear continuous time systems is
examined using the concept of the Lyapunov exponent. The Lyapunov exponent

Department of Aeronautical and may be regarded as the nonlinear/stochastic analog of the poles of a linear deter.
Astronauttcal Engineering, ministic system. It is shown that while the stationary probability density function

University of Illinois. of the response undergoes qualitative changes (bifurcations) as system parameters
Urbana. IL 61801 are varied, these bifurcations are not reflected by changes in the sign of theLyapunov

exponent. Thisfinding does not support recent proposals that the LyapunoL exponent
be used as a basis for a rigorous theory of stochastic bifurcation.

Introduction

The design of practical control systems requires that the So far the robustness analysis of stochastic systems has re-
mathematical model used be sufficiently robust. This implies ceived relatively limited attention. Wonham (1967) investigated
that qualitative properties should be preserved under the effect the problem of a linear continuous time system with linear
of all possible perturbations. Such systems were referred to by multiplicative white noise gain in terms of optimal stationary
Andronov, Vitt, and Chaikin (1965) as "coarse systems" and control using a state space formulation. A similar problem
formed the basis for the concept of structural stability in the was studied by Willems and Blankenship (1971) in the fre-
mathematical theory of dynamical systems (Arnold, 1983). In quency domain (see also Willems and Willems, 1983). ,a both
the context of single-input single o-itput (SISO) linear control instances, robustness was measured by a mean-square type
systems, robustness is characterized by the Nyquist plot and criterion. Robustness measures of stable, linear discrete time
the concepts of phase and gain margins. The extension of these systems %ere obtained by Yaz and Yildizbayrak (1985) and
ideas to multiple-input multiple-out (MIMO) linear systems is Yaz (1988). Their robustness measures are based on the sample
documented by Dorato (1987). Currently, there are two major stability of the perturbed system. The references mentioned
approaches to robustness analysis. The first assumes unstruc- above are mainly concerned with the effect of parametric fluc-
tured additive or multiplicative perturbations of the plant tuations/uncertainties on linear systems. For nonlinear sys-
transfer function. Robustness is then measured by the singular tems, as systems parameters are varied, qualitative changes
values of the return difference matrix. This is a frequency (bifurcations) in the system response can occur. In this paper,
domain technique which does not make explicit use of the the robustness of such bifurcations under the effect of random
"nonlinearities present in the system. The second method is external excitation will be examined. In the following section,
"referred to as a structured or parametric approach. The precise the problem is formulated in a general context and the idea
values of system parameters are unknown but the uncertainty of the Lyapunov exponent as a quantitative measure of ro-
is assumed to be bounded. The degree of robustness, indicated bustness is introduced. Examples of systems undergoing co-
by the system poles of the linearized system, is then determined dimension I and 2 bifurcations are then studied.
in terms of these bounds using Kharitonov-type theorems (Bar-
mish, 1988). These two techniques constitute a deterministic
approach to the robustness analysis of linear systems. The Problem Formulation
possibility of random parametric or external excitation is not Consider the following system:
considered.

d-= AX +f(X) + al (t) (I)
di

Contributed by the Applied Mechanics Division of THE AMERICAN SOCtETI where X is a vector in R" and without loss of generality it is
O(i Mi-HAi•, At ENGiN•t$s for presentation at the 1992 ASME Winier Annual assumed that A is in canonical form,f(X) arenonlinear terms,
Meeting, Anaheim, CA. Nov. 8-13. 1992

Discussion on ihis pape" should be addressed to Prof. Leon M. Keef , The and qp(t) represents independent zero-meam white noise exci-
Technological Institute, Northwestern University. Evanston, IL 60208. and will tation of unit intensity. Since only additive noise is present, it
be accepted until four months after final publication of the piper itself in the does not matter whether the 1t6 or Stratonovich interpretation

MaIE" JOURNAL OF ArPec iED MECHANIdS. Division, June4, t990, is used. Assuming that a stationary solution X, exists, theManu~crifi received by the ASME Applied mechanicsDison ue419;

final revision, Feb. 10, 1992. Associate Technical Editor: D. J. Inman. problem of robustness is concerned with the sample stability
Paper No, 92-WA/APM-3. of this stationary solution. As with deterministic systems, con-
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sider a small perturbation x. about this stationary solution.
Then to first order in the perturbation. a linear system with
stochastic coefficients is obtained:

dzr Of]
x=A+- I x1jA+F(t)Ix. (2)

Define a norm p = (xrx)2', the exponential growth rate of
the perturbation is then given by -0-4

d(logp) xT[(A+F(t)) + (A+F(t))TiXx 3F1 Lyspunov exponent (soft loss of stability)

dt 2 2p (3)

The Lyapunov exponent, A, is simply the time-averaged ex-
ponential growth rate defined by PS(xW

A=lim \ ( t- (4)

where
l _(t) = ojri(A+F(s))+(A+F(s)) rJx 0..

kog;,(0)) 1o 2p .4,

The stationary solution is sample stable if A < 0, and this is
a necessary condition for a robust system. Assuming that the
stationary state is also ergodic, the temporal average may be -2
replaced by the ensemble average and a quantitative measure
for robustness can then be computed, i.e., Fig. 2(s) Pob•billty density function (sofi loss of stability), . = -0.2

A= A + F(I)) + (A + F(1) (r

One may regard the Lyapunov exponent as the stochastic an- 7

alog of the poles of a deterministic system. This concept of
the Lyapunov exponent (Bylov et al., 1966) has been proposed
by L. Arnold (1988) as a basis for a rigorous theory of sto-
chastic bifurcation. A similar approach was also used by 0.4
Caughey and Gray (1965), Infante (1968), Kozin and Wu (1973),
and Ariaratnam and Xie(1988a) in their derivation of sufficient 0.3

conditions for the sample stability of linear systems with sto-
chastic coefficients.

One-Dimensional Systems -2 -i 2<

For one-dimensional systems, the computation of the Lya- Fig. 2(b) Probability density function (soft loss of stability), X = 02

punov exponent is fairly simple. Consider the general one-
dimensional system written ass sa loss of stability to a nearby equilibrium, f(X) = oX' .vith

tt =XX+f(X) +av(1), (6) a < 0) and the stationary probability density function is

and the perturbed system is p,(X) = exp 2()i1 Q 2+ aX'/4))
dx + _(X ) 0

( 7 + /x. (7)
Tt I dX ] f exp 01(.XX2/2 +. aX4 /4)) d.01

I f the stationary state is ergodic, then the Lyapunov exponent
is given by Assuming that the stationary solution is ergodic, the Lya-

A=X+E[df(Xs)( punov exponent is then given by Eq. (8):

A = A +3aEIX. (12)
and the stationary probability density function can be obtained
by solving the Fokker-Planck equation (FPE) for the system The Lyapunov exponent A is plotted against the eigenvalue

C ..• X for the deterministic system in Fig. I with o = 0. Iand a
0= -- 8 PX+f(X)Jp(X) -e -- (9) = - I. The deterministic system undergoes a bifurcation at X

aX( 2FX) = 0 and the probability density function changes from a un-

The stationary probability density function (pdf) is given by imodal density to a bimodal density (Fig. 2(a) and 2()). As
X ;evident from Fig. 1, the Lyapunov exponent A is negative % hichpX= p- MVz (=0) indicates that this is a robust feature, but the system is least

2X( robust at X = 0. Physically, this implies that perturbalion',

where N is an appropriate normalization constant. It is in- will take a much longer time to decay. It should be noted that
structive to consider a simple example: the Lyapunov exponent does not indicate the qualitative change

in the stationary pdf. This point was not adequately zmpha-
Example I (Simple Bifurcation-Soft Lou of Stability). sized by L. Arnold (1988) in his theory of stochastic bifurcation

For a symmetric system undergoing a soft loss of stability (i.e., based on the Lyapunov exponent.
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A

Fig. S Lyepunov exponent for dX : (1 + AX - Xd + -"xod aW

Fig. 3 Lyapunov exponent (hard loss of stability)

qualitative changes in the pdf as X is varied (Fig. 4). It can be

Ps(,X) seen that the decrease in robustness coincides with the emerg-
ence of two additional peaks in the pdf. Once again, it should

0. •be noted that the Lyapunov exponent remains negative and

cannot be used as a bifurcation parameter.
The results derived here for nonlinear systems under external

random excitation is by no means typical. In fact, parametically
excited systems studied by previous researchers in stochastic
bifurcation theory are extremely sensitive to errors in the ref-
eruice input. Consider the nonlinear system with fluctuating:. 2.gain:

2I.gan dX= (X-X 3 )dt + [2Xo dW, (17)
2 x where "o" denotes that the Stratonovich interpretation is

- 1 2 used. It is well known that the Lyapunov exponent is simply
Fig. 4(a) Probability density function (hard loss of stability), % : -1.5 X and the trivial solution X = 0 loses its stability at X = 0

and this coincides with a qualitative change in the probability
density function. Suppose now that a nonzero reference input
is present, i.e.,

dX=(l+ XX-X 3 )dt + 1i2X o dW. (18)

Since the drift term is not zero at X = 0, the system is ergodic
and a steady-state solution exists and is defined by the steady-
state pdf:

p, (X) = (19)

.0 else

2 where

- C= 1X)1-exp[-(/X+X2/2)]dx,S11 2
th Fig. 4(b) Probability density function (hard lose of stability), x 0.9 Perturbing about this stationary (ergodic) solution leads to

the following linear system with stochastic coefficients:
dx= IX- 3(Xs) 2]xdt + ,f'2rodW. (20)

Example 2 (Simple Bifurcation-Hard Loss of Stability). ya o eX i then g by

Now consider the one-dimensional system The Lyapunov exponent is then given by
Ilx(t)l

I) dX U+C3X+C.SX,+ (t) (13) A=lim I log- - ==X-3E[X] (21)
dT -. t x()

" here C, > 0, C, < 0 for a hard loss of stability. The steady- since the Wiener process W(t) - (tloglogt)12ast - o with
stale pdf is given by probability one. The Lyapunov exponent Eq. (21) is plottedp gvnin Fig. 5 and is negative. The variation of the Lyapunov ex-

2)(X) = N exp X1-2 + C3- +CS (14) ponent with X is not unlike that of a system perturbed by

ae ([ 2x) (14) external random excitation. This "quasi-external excitation"
a where the normalization constant N is defined by effect of a nonzero reference input is apparent if the trans-

- xformation X = Y + C is made in Eq. (1) so that the nonzero
X . + dX (15) reference input is eliminated. One sees that an additional ex-At-se 2 4 6 ternal excitation term (CdW) is then generated from the mul-

:h and the Lyapunov exponent is (from Eq. tiplicative noise term XodW(
Ast
,ns A = X + 3CsIX 2J + 5CEIX"] (16)
,at where the expectation is taken with respect to the steady-state Two-Dimensional Systems
Ige pdf defined by Eq. (14). Numerical results for C3 = 2, C5 = Noting that the problem of robustness leads to a linear
I9- - I and o2 = I are shown as Fig. 3. In this case, the system system with stochastic coefficients, it is convenient to first
0C is least robust just before the deterministic bifurcation point consider the general two-dimensional linear system with sto-

at X = 0. It is interesting to compare this result with the chastic coefficients:
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___ drdx-= F1 (Ox, + F1(~2 (O= dr ,+ 2a (X' ÷Y2) b(A
di (22) d (

dxit +F.N(a2 + b[('- Y )siný - 2XYcosý F2()x+U(X (31)

where the FO () are colored noise sources generated from white w + 2b(X2 + Y2) +V7+ 0 W - Y )coi and
noise. Making the transformation, x, - rcoso, x2 - r sine, dr tain,

(38'

dr I where 0 = 2# + arctan(a/b). Since w is nonzero and the x,

. [(Ft, + F2) + (F1t + FZ1 )sin2 + (Fi1 - F2)cos2#Jr Yprocesses are assumed to be ergodic, the L apuno'. exponentW, 2 is then given by Th!

7t= 2 1(F2 -FF2) + (Fn-Fi)sin29+(Fzi +F12 )cos2OJ (23) A=EfI + 2a(X 2 + yl)

If the 0 process and the F#(t)'s are ergodic then the Lyapunov + V;ý+ b'[ (X 2 
- Y )sin1 -2X Yosi ]] (32)

exponent is given by where the expectation is taken with respect to the steady-state For
1 I _222joint probability density function p,(X, Y. 0). A perturbation is s.

A=2E!(Fi +F,)+/(Fia+Fza)2 +(Fa-F.) 2sin(25+ )I expansion for this steady-state pdf may be conitrucied usinC
(24) a separation of time scales technique given in Blankenship and Of

Papanicoloau (1978). Roughly, since the X. Y processes are bifurwhere # is a random phase angle defined by assumed to be stationary to start with, these processes must
'F, -Fhave evolved sufficiently fast to reach a stationary state and

*=arctan 1 I 2 (25) should be scaled accordingly for consistency. The techniquekctn + F2 ,- has also been applied by Horsthemke and Lefever (1984) and
is explained in Appendix A. Then the Lyapunov exponent can

Noting that I sin(20 + #) I s 1, an upper bound for the Lyai be computed term-wise from such an expansion has been pro% en
punov exponent can be found and hence a sufficient condition by Arnold et al. (1988). For simplicity, the technique %ill be
for sample stability is: applied for the case b = 0 and the angular frequency ,e is

E[(F 11+Fn)+ (F]2 +F 2 1 )2 + (F 1IF2) 2
1<0. (26) large. The system defining the steady-state pdf is scaled as wheT

follows: and.
A necessary condition for sample stability requires that the servi
joint moment of the stochastic coefficients and the phase proc- X )in2-2XYcos2OJ Lyar
ess 9 be computed. These ideas are applicable to the following d v- [(X -

system:

Example 3: Hopf Bifurcation (Dynamic Inslability). +Y 2 + (1) wher
Consider the nonlinear system perturbed by independent ex- t =1 [ -Y X densi
ternal white noise sources:

dX=i.X_•y+ (aX-bY)(X 2 + y 2)+uih(t) Id'=ic {aX-Y++aY(X 2 + y2)] +_ 1(t) (33)

and
Let the steady-state pdf take the following form:dY = 2 n tt7=wX+p Y+ (aY+bX)(X 2 + Y2) +017(t) (27) pAX, Y, 0)=po(X, Y, 0) + p, (X. Y, 0)+ .... (34)

where the deterministic terms correspond to the normal form The steady-state Fokker-Planck Equation for Eq. (33) may be
for the Hopf bifurcation. A stationary state exists for the case written as The l
a <0, and the pdf is given by 1 Fig.

SL4O(pJ +-LIpl=0. (35) It is

P[2 / X X+ y2) '7(X2 + y 2 ) (2 l CeXter,
+2 - . 8) where the operators Li and L, are defined as follo%%s: pertur

and = exp • , • ( z opYOP- 0

2- +, Y [- 2 (-)0) -.2i-,2 form
a ap\ 'ap inder

+0 (X2+ Y) dXdY. (29) T

L,[p]= -a [((X'- Y1)sin28- 2XYcos281p]. 436)
Perturbing about this stationary state, the resulting linear sys-
tem, Eq. (22), is defined by x, = x, x2 = y and Substituting Eq. (34) for the pdf leads to the system Of

Fit = J&+ a(3X2 + Yl) - 2bXY equations:Lo = 0 her

F'2 ~. b(X 2 + 3 y) +2Xy Static
LF-•- I = L1IPo] used.

F2 1=w,+b(3X2 + y2) + 2aXY .... .wor
varial

F=n -#a+a(X 2 + 3Y2) +2bXY (30) LQ[P.] = L,1p.. ,]. - I

which leads to The solution to the lowest order equation is result
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p" (X, Y. 0) =A MX Y)p, (0) A)"-°+
r2 t(X'+ gY) (XI + y21 38

=Nexp [; kA 2 + 4 (38)

and an approximation to the Lyapunov exponent is then ob-
tained from Eq. (32) by taking expectation with respect to Eq.
(38).

A p+2aEIX2 + Y)]. (39) -. 4

This is compared in Fig, 6 with the sufficient condition ob- 1"-2
tained from Eq. (26), which states that the system is robust if

X 2
+ yJFg4 Lyapunow exponent (Iopf blfuuiont) (1) uppw bound-non.

a+ l al )E[2 +1, < O. (40) r"8il oexcitation, (2) exact-radial excitation, (a) lw si-lrdef aproxi.mation--nonradiai exctaltion
For a = -0.5 and o2 = I. the sufficient condition Eq. (40)

is satisfied. This indicates that the system is robust but as
expected, it provides a more conservative robustness measure
compared to Eq. (39). dR

One may also check if the polar representation of the Hopf - = di R + cR' + eRZ1 + %5,1, (t)
bifurcation, Eq. (27). is robust to external excitation. Consider

_R = dZ = XZ + bZ3 + dR2Z + ,•'ij2•(), (45)
dt dt

where the new system parameters are given by
d'-w+bR2 + 0i 2 (I) (41) b=b'(v2)2/2, c=c'(o3 )2/2, d=d'(ot)2/2, ee'(o2)'/2.
O!

An explicit normalizable solution to the steady-state FPE
where the noise terms are included for the robustness analysis for Eq. (45) can be found for the case d = e = k, provided
and, for purposes of comparison, b will be set to zero. Ob- b. c < 0 and if k > 0, then bc - PJ > 0 must also be satisfied.
serving that the amplitude R is decoupled from the phase, the The steady-state probability density function is then
Lyapunov exponent is then given by

A = IA + 3aE[R21, (42) p,(R, Z)=N exp(4 (2&+cR2)R 2 +2kR 2Z2 + (2X+ bZz)Z2).

where the expectation is taken with respect to the probability
density function 

(4)
with N as a normalization constant. Perturbing about this

(/2+ 4)) stationary state and to first order in the perturbation,

p,(R2 2vsain dr
pand. W)= ./ 4 ""(i+3cR 2 +kZ2 )r+ (2kRZ)zand di

N = fexp (('R 2/2 + aR4/4))dR. (43) dz
-W/= (2kRZ)r + (X + 3bZ2 + kR)z. (47)

dt

The Lyapunov exponent, Eq. (42), is also plotted against ;L in Using the formula derived earlier, Eqs. (22)-(23), and letting
Fig. 6 for the same parameters, i.e., o2= I and a = -0.5. r = pcosf, z = psin0, the growth rate of the norm of the
It is evident that the polar representation is less robust to perturbation, p, is governed by
external random excitation. Physically, in Eq. (41), the per-
turbations are aligned with the radial direction and hence the dp I [0X+A)+(3c+k)R2+ (3b+k)ZI+4kRZsin26
perturbations should have a greater effect on the amplitude. di [

Example 4 (Hopf-Pltchfork Interaction-Coupled Dy- + ((j- X) + (3c- k)R 2 + (k- 3b)Z)cos2lp. (48)
namic/Static Instability). Consider the deterministic normal
form for the Hopf-pitchfork bifurcation perturbed by external Scaling the 0, R, Z processes as in Appendix A yields
independent white noise sources: do IR.= k (-j)sin26+I 14kRZcos2E

di = R+c'R +e'RZ 2 +oi,(f) + (3b- k)Z. + (k- 3c)R 2 sin2*)
dR I•= "•. I (uR + cR3 + kRZ2 ) + f2l_#1 ()

dZ bZ3 + + 022 , (44) d
T, dZ -I+ 2Z+

where R represents the dynamic mode (R > 0), and Z, the dt eI (AZ +bZ' ) (49)

static mode. Based on Example 3, the polar representation is
used since from a robustness viewpoint, this corresponds to a For simplicity, let k - 3b - 3c-. The steady-state FPE is
"worst-case" situation. It is convenient to rescale the state given by
variables by I /

R--4,R/o,, Z- ,,-2Z/oz,. •el] f;LI]-d]-,(0

resulting in with Lo, L1, L, defined by
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a

±P_ R R I -- P (R , Z ) = 2) _ ii. b
Lo R - 3 +kRZ/ p- M(O, 2)+ M(2. 0) (8)

, + ) Now, at 04E):

3- 3 k -j LoI1pj = 2kRZ ± Irr(R, Z )•cos281 + -- "_n a_2 aH 2 r VA~sin20].

LI(PI = 2kRZ - pcos20 (59)
.(9

Substituting for r,(R, Z, 9) and invoking Fredholm's alter.
L&[I-2•= Lpsin28]. native, re(f) has to satisfy

[ 2Cre(8)sin2 + cos20 -ý jr,AO)C'o5201 0 , (60)
Let the perturbation expansion be of the form a5 C n +0

p,(R, Z. 0) =Po(R, Z, 0) + ep1 (R, Z. 9) with C = (A - u)/(I6k2EIRZP(R, Z). %4 here the expectation
is taken with respect to p,(R, Z). This equation may be re.

+e2pz(R, Z, 0)+.... (51) written as

and the system of perturbation equation is a 8 _[csi .I ] +
]=O - ( • 1 sin48 ro +2 VrXos'20I =0, (61)

which takes the form of a steady-state Fokker-Planck equation 0
L40p] = Lj[PoJ with drift and diffusion defined, respectively, by P.

4Wp=]=L ptl +LIPoA #(0)- Csin20+- sin4O and 1"(O)=cos'28. (62)

The process evolves on the half circle 0 E [0, r1 with sin-
Lo[P.]=LjtP.jIJ+LfP,.-2]. (52) gularities at 9 = r/4 and 3s/4. As C ;d 0, the drift at the 5\

It is convenient to let p.(R, Z, 0) = p,(R, Z)r.(r, Z, 0), singular points is not zero and thus the singular points can be

where p,(R, Z) is defined in Eq. (46), so that the operator classified as left and right shunts depending on the sign of the

LOip.! takes the form drift term. The boundary point classification is performed
using the Feller classification scheme (1954). It is shown in

S= ar.] + 8r]. (53) Appendix B that the boundary points 0 = 0, r are both per-
LTpa--LotP•l Ia LZ azI i (5 fectly reflecting regular points. Therefore, the 0 process is

a [ r ergodic and the Lyapunov exponent can be found using Eq.

which is a linear self-adjoint operator. Substituting into the (24) to be
FPE, Eq. (5) and collecting terms, the 0(et ) equation is trivally X + U- S
satisfied withpo(R, Z,9) = p,(R, Z)ro(O), but unlike Example A=- - 2 Elcos20] + k(E[R+I + E[Z21) (63)
3, re(G) has yet to be defined. The O(el) equation is 2

O Now consider the case C > 0, (similar results can be derised
Le[p;rJ=Li[plro(0)J=2kRZp,(R, Z) -=rM9)cos20. (54) for C < 0). The singular points are given as left and right

shunts for 0 = t/4 and 3jr/4, respectively. That a nontrivial

According to the solvability condition, normalizable solution for r0 exists on the interals, (0, ir/4)
2w - 2kRZp,(R, Z) a =roO)cos2O and (3v/4, v) is shown in Appendix B. r,, is given by:

xp,(R, Z)N(O)dZdRdO=O N 0es 0 /4 or 3N/4s s ir

where the term p,(R. Z)N(O) belongs to the kernel of Lo. ro() = {p(C/cos29)cos28 (64)

Since this has to hold for an arbitrary N(O), it is required that10 else

2kRZp,'(R" Z)dZdR = 0. (55) where Nis a normalization constant. The Lyapunov exponent,
1 - Eq. (63), is plotted against F (where X = v and u = v + I)

Asp,(R, Z) is symmetric in Z, this implies that Fredholm's in Fig. 7 for k = - 1. The deterministic system undergoes
alternative is satisfied and that a unique solution for r, can be primary bifurcations at , = Oand - 1. A secondary bifurcation
found. Using the fact that Lo is a linear operator, r, can then occurs at , = 0.5. It can be seen that these features are robust
be expressed as the sum of a homogeneous and particular (i.e., the Lyapunov exponent remains negative) and a decrease
solution in robustness coincides with the occurrence of the first prir ry T

r1(R, Z, 0)=H(O) + 2k j=ro(O)cos2OP(R, Z). (56)

where H(d) is the homogeneous solution of Lo[pý,H(O) = 0 -.
and P(R, Z) is a particular solution of LOpP(R, Z)] =
RZp,(R. Z). It remains now to solve for P(R, Z). Using
Galerkin's approximation, let P = IEC,,,R"Z" and take weight -2 -1.5 -1 -V0.
functions of the form RP-r. Define -2,2

2,4 12

M(m, n)= R'Z'p,(R, Z)dZdR. (57)

A simple 3-mode expansion, P(R, Z) = COjR + C11RZ -8

+ C•7Z', yields Fig.? Lyapmnov exponent (Hopf-pitchfort bifurcatio) F
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bifurcation. Once agaitn, the L-yapunov exponent does not re- Nishioka. K.. 1976. "On ithe Stability of To-Osmensional Lintear Stochastic
8) Ilect the qualiatiie cha~ng'es in the pdf but does indicate whe Systems.' " odo, Mathematics Seminar Report, Vol. 27. pp. 21) -230

'Aillems, J, C., and Blankenship, G. C.. 197 1, "Frequency Domain Stability
nonlinear effects beconte significant. Criteria for Stochastic Systems." IEEE rfanisachonis on Automatc Control,

Vol 16. pp 292-299.
WtIlens. J, L., and Willents. 1. C.. 1"83. "Robust Stabilization of Uncertain

Conclusion System,,- SlAM Journal of Control and O4pttmiawion. Vol. 21. pp 352-374.
Wonharn. W, H., 1967. "Optimal Stationary Control of a Linear System with

9) The major conclusions of this investigation are as follo%%s: State Dependent Noise," SIAM Journalcof Contriol. Vol. 5. pp. 486-00.
I While the Lyapuno% exponent provides a robustness mecas- Ysr. E.. 1988. "Deterministic and Stochastic Robustness Measures for Dis-

ure for the combined effects of nonlinearities and noise, it is crete Systems," IEEE 7'rapsecticors on Automatic Control, Vol. 33, ppý 952-
not a suitable bifurcation parameter for nonlinear stochastic Ya. . and Yildizbayrak, N.. 19M5 *Robustness of Feedbasck-Stabilized
systems in the sense that it does not reflect the qualitative Systems in the Presence of Non-lintear and Random Perturbatio a," Interna-
changes in the steady-state probability density function. This tional Journal of Control, Vol. 41. pp. 345-i53.
occurs whenever X = 0 is not a solution of the nonlinear

,nstochastic system. Examples of nonlinear systems under ex- APP ~EN D IX A
ternal (additive) random excitation and systems under para-
metric random excita'ion (multiplicative noise) with a nonzero The scaling employed is adapted from Horsthemrke and Le-
reference input were shown to possess negative Lyapunov ex- fever (1984) and may be justified as follows:

I)ponents. I The X and Y processes are assumed from the start to be
2 The results of this investigation suggest that the extremum stationary (ergodic) processes. This stationary state is achieved

,n of the Lyapunov exponent (with respect to the bifurcation only in the limit I - on. Hence, in the 1t6 representation of
parameter for the deterministic system) provides an indication the X and Y processes, time is scaled as I - 1/f 2 so that the
of when nonlinear effects become important. For the one and stationary state is reached in the limit e - 0.

2) two-dimensional systems perturbed by external random exci- 2 Now consider the effect of such a scaled process Z C:)
lation, it was observed that this extremum follows the occur- X(Ile 2) in the 8 equation. For example,
rence of the first bifurcation in the corresponding deterministic dO =fJ6)dl + Z(t)g(f)dt. (65)

iesystemp It is left as a conjecture that this is a general char-
ýeactertic.i of nonlinear systems perturbed by external random T'he spectrum of Z(1) = X(t/e2) is given by

excitation. SAWu) I IZ (I)Z(t+ r)lexp( -jurr)di
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s(z) and m(x) are called the scale and speed densities. The Z(t) = 0. Since 0 = 0 implies Z = 0. there can be no accu.
scale and speed measures are found to be mulation of probability mass at the point.

As 0 = 0 is purely reflecting and 0 = jr/4 is a left shunt,

Exp [C ExpI C- the region (0, r/4) has the property of recurrence or ergodictyt~* 1 os0 e Cos2j and a unique, normalizable stationary denit et on t

Sd,7 M(O)= c d•. interval. Similar conclusions may be made for the interal
j lcos,2iy (3Ir/4, v). Should 9 start outside the inter'.als (0. x/4) and

(70) (3w/4, v), it can be shown (Nishoka, 1976) that the 0 process
moves into either one of the two intervals in finite time with

Again, only consider C > 0 and GE [0, r/4). Both functions probability one. The temporal average can then be replaced
are bounded and continuous on 0 e (0, r/4) and as such the by the ensemble average computed with respect to
integrals on this region are also bounded. Thus, 9 = 0 is a N
regular point. p(O) = Nm(O) = cos20Exp[C/cos2O(

The property of pure reflection can be determined from a
physical argument. It is clear that unless the coupling coeffi- where N is a normalization constant. Similar results can be
cients are both zero, it is not possible to have a solution with obtained for C < 0.
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